APPENDIX D
Geotechnical Report/
Paleontological Memorandum
Memo

To: Amy Harbin at the City of Long Beach

From: Sandra Pentney
Email: Sandra.Pentney@atkinsglobal.com

Phone: 858-514-1083
Date: Dec 12, 2018

Ref: Long Beach Cruise Terminal Improvement Project
cc: Mark Stroik, Brian Leslie, Alan Ashimine

Subject: Geology and Soils Technical Report

The objective of this memorandum is to provide information in support of environmental permitting with findings from the technical study of geology and soils as it relates to the Long Beach Cruise Terminal Improvement Project.

Geotechnical sampling was conducted by Gregg Drilling & Testing, Inc. on July 24-26, 2018. Three full length borings were collected in the immediate vicinity of the proposed project as laid out in Figure 1. One boring was collected near each of the anticipated pile-founded structure locations. The borings were collected using a standard penetration test (SPT) method and followed current ASTM standards.

These samples were processed in the laboratory and analyzed by Leighton Consulting, Inc. for the purpose of determining design elements related to the pile-founded structures. The results were used to answer all questions in Appendix G of the CEQA guidelines, presented in the Seismic and Geologic Hazards Assessment attached herein. A full geotechnical report prepared under the supervision of a California Geotechnical Engineer and a certified Engineering Geologist is presented in Attachment 2 of this document.
Figure 1. Boring locations for structural elements at the Long Beach Cruise Terminal
Memo

Attachment 1. Seismic and Geologic Hazards Assessment
SURFACE FAULT RUPTURE

The project site is located near the eastern end of the 45-acre Queen Mary Complex at Pier J in the Port of Long Beach (POLB), Long Beach, California (Figure 1, Site Location Map). Our review of available in-house literature indicates that no known active faults have been mapped across the site, and the site is not located within a designated Alquist-Priolo Earthquake Fault Zone (CGS, 1986; Bryant and Hart, 2007). Therefore, the potential for surface fault rupture at the site is expected to be low and a surface fault rupture hazard evaluation is not mandated for this site.

The location of the closest active faults to the site was evaluated using the United States Geological Survey (USGS) Earthquake Hazards Program National Seismic Hazard Maps (USGS, 2008). The closest active faults to the site are the Newport-Inglewood Fault Zone (NIFZ), Palos Verdes fault and the Puente Hills fault, located approximately 3.4 miles, 3.5 miles and 11.1 miles from the site, respectively. The Puente hills fault is a blind thrust fault that is concealed at depth, without the potential for surface fault rupture. The San Andreas fault, which is the largest active fault in California, is approximately 51 miles northeast of the site. Major regional faults with surface expression in proximity to the site are shown on Figure 2, Regional Fault and Historical Seismicity Map.

The THUMS-Huntington Beach fault is located to the southwest of the project site, splays southeastward from the onshore portion of the Palos Verdes fault. This fault forms the southwestern border of the Wilmington and Huntington Beach anticlines where it extends southeastward from the Huntington Beach anticline merging with the Newport-Inglewood fault zone (Ishutov, 2013). This fault does not pose a surface rupture hazard to the project site.
STRONG GROUND SHAKING

Future earthquakes are expected to generate moderate to strong ground shaking at the site. The current code-based Maximum Considered Earthquake (MCE) corresponds to an earthquake event with a probability of exceedance of 2 percent in 50 years (i.e., 2475-year return period).

Based on review of the Port-wide Ground Motion Study Report (EMI, 2015), the shear wave velocity in the vicinity of the site is on the order of 150 meters per second (m/sec). It corresponds to a Site Class E soil profile based on California Building Code (CBC, 2016). For the purpose of this report, a Site Class E was used in calculating the seismic design parameters for the site since the existing and new structures for the pier expansion will be supported on piles established in competent soil underlying the dredge fills and tidal deposits.

The design and risk-targeted MCE spectral acceleration parameters for the site at five percent structural damping are presented in the Table below. These parameters were calculated based on the general procedures of the 2016 CBC using the USGS U.S. Seismic Design Map Tool (USGS 2016a).

Table 1 - 2016 CBC Spectral Acceleration Parameters

<table>
<thead>
<tr>
<th>Categorization/Coefficient</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Latitude</td>
<td>33.7515°</td>
</tr>
<tr>
<td>Site Longitude</td>
<td>-118.1871°</td>
</tr>
<tr>
<td>Site Class</td>
<td>E</td>
</tr>
<tr>
<td>Mapped Spectral Response Acceleration at Short Period (0.2 sec), S_s</td>
<td>1.592g</td>
</tr>
<tr>
<td>Mapped Spectral Response Acceleration at Long Period (1 sec), S_l</td>
<td>0.599g</td>
</tr>
<tr>
<td>Short Period (0.2 sec) Site Coefficient, F_a</td>
<td>0.9</td>
</tr>
<tr>
<td>Long Period (1 sec) Site Coefficient, F_v</td>
<td>2.4</td>
</tr>
<tr>
<td>Adjusted Spectral Response Acceleration at Short Period (0.2 sec), S_{MS}</td>
<td>1.432g</td>
</tr>
<tr>
<td>Adjusted Spectral Response Acceleration at Long Period (1 sec), S_{M1}</td>
<td>1.438g</td>
</tr>
<tr>
<td>Design Spectral Response Acceleration at Short Period (0.2 sec), S_{DS}</td>
<td>0.955g</td>
</tr>
<tr>
<td>Design Spectral Response Acceleration at Long Period (1 sec), S_{D1}</td>
<td>0.959g</td>
</tr>
<tr>
<td>Mapped Geometric Mean MCEG Peak Ground Acceleration, PGA</td>
<td>0.624g</td>
</tr>
</tbody>
</table>
In accordance with Section 11.8.3 of ASCE Standard 7-10, the mapped Geometric Mean peak horizontal ground acceleration (PGA) is 0.624g for the site. For a Site Class E, the F_PGA is 0.9 and the mapped peak ground acceleration adjusted for Site Class effects (PGA_m) is 0.562g.

By deaggregating the peak ground acceleration with respect to magnitude and distance, the MCE at the site will most likely a magnitude 7.4 event occurring approximately 3.5 miles from the site (USGS, 2016b).

HISTORICAL SEISMICITY

Although Southern California has been seismically active during the past 200 years, written accounts of only the strongest shocks survive the early part of this period. Early descriptions of earthquakes are rarely specific enough to allow an association with any particular fault zone. It is also not possible to precisely locate epicenters of earthquakes that have occurred prior to the twentieth century.

A search of historical earthquakes was performed using the computer program EQ Search (Blake, 2000) for the time period between 1800 and 2016. Within that time frame 526 earthquakes between magnitude 4.00 and 9.0 were found within a 62-mile (100-kilometer) radius of the site. Of these earthquakes, the closest was an earthquake located 0.5 mile (0.8 kilometer) from the site, and occurred on August 4, 1933. Although not precisely located, the epicenter for this earthquake event is located to the east of the project site. The earthquake registered magnitude 4.0 Mw and induced an estimated peak ground acceleration (PGA) of 0.153g at the project site.

There are records of three earthquakes with a magnitude 7.0 or larger within the search performed, which were magnitude 7.0 Mw earthquakes that occurred on December 8, 1812, September 24, 1827 and December 16, 1858. The largest PGA at the site is estimated to have been roughly 0.232g from the magnitude 5.4 Mw earthquake that shook the region on November 14, 1941. For a general view of recorded historical seismic activity see Figure 2, Regional Fault and Historical Seismicity Map.

Review of additional data available from the Center for Engineering Strong Motion Data (CESMD) website (http://strongmotioncenter.org/) indicates that the highest recorded ground acceleration in the vicinity of the project site was 0.70g for a station located approximately 3,000 feet northwest from the site. The recorded ground acceleration was from the magnitude 6.4Mw Northridge earthquake that occurred on January 17, 1994.
LIQUEFACTION POTENTIAL

Soil liquefaction is the degradation of strength and stiffness in soils due to build-up of pore water pressure when subject to cyclic or monotonic loading. Liquefaction occurs when three general conditions exist:

- shallow groundwater
- low density, fine, clean sandy soils and sensitivity fine-grained soils
- high-intensity ground motion with significant duration

As shown on the State of California Seismic Hazard Zones Map for the Long Beach Quadrangle (CGS, 1999), the site is mapped within an area that has been identified as being susceptible to liquefaction (Figure 3, Seismic Hazard Map).

The site for the existing pier structure and the proposed new improvements consist of 20 to 25 feet of dredge fill and tidal deposits overlying Pleistocene Estuarine Deposits (i.e., native alluvium). Based on our subsurface exploration, the dredged fill and tidal deposits beneath the site generally consist of very soft to soft or loose to medium dense layers of silt, sand, and clay. Laboratory test and analysis suggested that the materials are prone to liquefaction during the ground motions from earthquakes anticipated at the site. The native alluvium soils below the dredge fill and tidal deposit consist of dense to very dense silty sand and stiff to very stiff silt, sandy silt, and silty clay. The native alluvium is not considered susceptible to liquefaction.

The potential impacts of soil liquefaction on the project site are discussed below.

Ground Settlement

The dredge fill and tidal deposits will subject to settlement during earthquake. Based on exploration for other Carnival Cruise Line’s projects in the vicinity (Leighton 2017 and 2018), most of the materials will behave mainly as “clay-like” soils. Therefore, the seismically-induced settlement is not anticipated to be excessive. However, the settlement will impose additional loads on the existing and proposed new piles.

Loss of Bearing Strength

The shear strength of the dredge fill and the tidal flat deposits will be partially loss due to liquefaction. The strength loss in the materials should be considered in the design of the pile foundation supporting the existing pier and the proposed new structures. The
shear strength of the underlying native alluvium is not expected to be degraded during earthquake shaking.

Lateral Ground Displacements

The dredge fill and the tidal deposits are susceptible to lateral spread resulted from liquefaction due to loss of strength and stiffness in the soils during and shortly after earthquake. The lateral displacement of the materials should be considered in the design of the pile foundation supporting the pier and the proposed new structures.

SEISMICALLY-INDUCED LANDSLIDES

Based on the State of California Seismic Hazard Zones Map for the Long Beach Quadrangle (CGS, 1999), the site is not located within an area that has been identified by the State of California as being potentially susceptible to seismically induced landslides (Figure 3, *Seismic Hazard Map*). However, the post-dredging slope in the dredge fill and tidal deposits are susceptible to lateral displacements resulted from liquefaction.

SOIL EROSION AND LOSS OF TOP SOIL

The potential for soil erosion and loss of top soils is not a consideration for the proposed project.

EXPANSIVE SOIL

Expansion potential of the site soils is negligible because the soils will not subject to change in moisture content.

SEPTIC TANKS AND ALTERNATIVE WASTE WATER DISPOSAL SYSTEM

The use of septic tank and alternative waste water disposal system are not planned for the project.

Attachments: References

- Figure 1 – Site Location Map
- Figure 2 – Regional Fault and Historical Seismicity Map
- Figure 3 – Seismic Hazard Map
REFERENCES

California Geological Survey (CGS; formerly California Division of Mines and Geology, CDMG), 1986, State of California Special Studies Zones Long Beach Quadrangle, Revised Official Map, effective July 1, 1986, map scale 1:24,000.

United States Geological Survey (USGS), 2008, National Seismic Hazard Maps – Fault Parameters,
http://geohazards.usgs.gov/cfusion/hazfaults_2008_search/query_main.cfm

______, 2016a, U.S. Seismic Design map,

Figure 1

Proposed Supplemental Pier Facilities
Existing Carnival Cruise Lines Terminal
Port of Long Beach, Long Beach, California
REGIONAL FAULT AND HISTORIC SEISMICITY MAP
Proposed Supplemental Pier Facilities
Existing Carnival Cruise Lines Terminal
Port of Long Beach, California
SEISMIC HAZARD MAP
Proposed Supplemental Pier Facilities
Existing Carnival Cruise Lines Terminal
Port of Long Beach, California

Legend
- Landslide Hazard Zone
- Liquefaction Susceptibility Zone

Figure 3

Project: 12096.001
Eng/Geol: VPI
Scale: 1" = 4,000'
Date: October 2018

Base Map: ESRI ArcGIS Online 2018
Thematic Information: Leighton, CGS
Author: Leighton Geomatics (btran)
Memo

Attachment 2. Geotechnical Design Report
GEOTECHNICAL EXPLORATION REPORT
PROPOSED EXPANSION OF
EXISTING CARNIVAL CRUISE LINE PIER
PORT OF LONG BEACH,
LONG BEACH, CALIFORNIA

Prepared for:
Atkins
17220 Katy Freeway, Suite 200
Houston, Texas 77094

Project No. 12096.001
December 10, 2018
December 10, 2018

Project No. 12096.001

Atkins
17220 Katy Freeway, Suite 200
Houston, Texas, 77094

Attention: Mr. Brandon Smith

Subject: Geotechnical Exploration Report
 Expansion of Existing Carnival Cruise Line Pier
 Port of Long Beach, Long Beach, California

Per your request and authorization, Leighton Consulting, Inc. (Leighton) has performed a geotechnical exploration in support of the expansion of the existing Carnival Cruise Line Pier located at the Port of Long Beach (POLB), Long Beach, California. The scope of work for this exploration was outlined in our proposal dated June 13, 2018 and authorized by you on July 12, 2018.

The proposed expansion of the existing pier will consisted of addition of two new mooring dolphins to the existing mooring dolphins and an extension of the existing pier gangway. Based on our exploration and analysis, the construction of the proposed supplemental facilities is considered feasible from a geotechnical standpoint. Geotechnical recommendations for the design of the supplemental pier facility foundations are presented in this report.
We appreciate this opportunity to be of service. If you have any questions regarding this report or if we can be of further service, please call us at your convenience at (866) LEIGHTON, directly at the phone extensions or e-mail addresses listed below.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Robert Hennessey, PE 86902
Senior Project Engineer
Ext 3023, rhennessy@leightongroup.com

Review By

Vincent P. Ip, PE, GE 2522
Senior Principal Engineer
Ext 1682; vip@leightongroup.com

NA/RPH/VPI/Ir

Distribution: (1) Addressee
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Site Description and Proposed Development</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose and Scope of Exploration</td>
<td>1</td>
</tr>
<tr>
<td>2.0 GEOTECHNICAL FINDINGS</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Geologic Setting</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Subsurface Soil Conditions</td>
<td>5</td>
</tr>
<tr>
<td>3.0 SEISMIC AND GEOLOGIC HAZARDS ASSESSMENTS</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Surface Fault Rupture</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Strong Ground Shaking</td>
<td>6</td>
</tr>
<tr>
<td>3.3 Historical Seismicity</td>
<td>8</td>
</tr>
<tr>
<td>3.4 Liquefaction Potential</td>
<td>8</td>
</tr>
<tr>
<td>3.5 Seismically-Induced Landslides</td>
<td>10</td>
</tr>
<tr>
<td>3.6 Flood Hazard</td>
<td>10</td>
</tr>
<tr>
<td>3.7 Seiches and Tsunamis</td>
<td>10</td>
</tr>
<tr>
<td>4.0 FINDINGS AND CONCLUSIONS</td>
<td>11</td>
</tr>
<tr>
<td>5.0 DESIGN RECOMMENDATIONS</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Foundation Recommendations</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Construction Consideration</td>
<td>15</td>
</tr>
<tr>
<td>6.0 LIMITATIONS</td>
<td>16</td>
</tr>
<tr>
<td>7.0 REFERENCES</td>
<td>17</td>
</tr>
</tbody>
</table>

TABLES

- Table 1 - 2016 CBC Spectral Acceleration Parameters | 7
- Table 2 - Idealized Soil Profile and Strength Parameters | 13

LIST OF ATTACHMENTS

- Important Information About Your Geotechnical Engineering Report | Rear of Text
- Figure 1 – Site Location Map | Rear of Text
- Figure 2.1 – Previous Geotechnical Investigation Location Map | Rear of Text
- Figure 2.2 – Exploration Location Map | Rear of Text
- Figure 3 – Regional Geology Map | Rear of Text
- Figure 4 – Regional Fault and Historical Seismicity Map | Rear of Text
TABLE OF CONTENTS (continued)

Figure 5 – Seismic Hazard Map Rear of Text
Figure 6 – Flood Hazard Map Rear of Text
Figure 7 – Tsunami Inundation Map Rear of Text
Figure 8 – Ultimate Axial Capacity – North Mooring Dolphin Rear of Text
Figure 9 – Ultimate Axial Capacity – South Mooring Dolphin Rear of Text
Figure 10 – Ultimate Axial Capacity – Gangway Tower Rear of Text

APPENDICES

Appendix A – Field Exploration Logs
Appendix B – Geotechnical Laboratory Test Results
Appendix C – Seismicity Data
Appendix D – P-Y Curves Coordinates
1.0 INTRODUCTION

1.1 Site Description and Proposed Development

The existing Carnival Cruise Line pier facility is located east of the Carnival Cruise Line Terminal at Queensway Bay at Pier J in the Port of Long Beach (POLB), Long Beach, California (Figure 1, Site Location Map).

The proposed expansion of the pier facility will consist of adding two new mooring dolphins (north and south) and an extension of the existing pier gangway (Figure 2.2, Exploration Location Map). As currently planned, the new mooring dolphins will be approximately 38 feet wide and 30 feet long by 5 feet thick reinforced concrete structures. One mooring dolphin is proposed to be located approximately 110 feet north of the existing Mooring Dolphin No.1. The second mooring dolphin is proposed to be located 120 feet south of the existing Mooring Dolphin No.4. Both new dolphins will be situated in line with the existing dolphins. The gangway extension is planned to be approximately 40 feet long and 35 feet wide by 5 feet thick reinforced concrete structure and located on the southern edge of the existing gangway. Based on the 30% design plan, the finish surface of the three new structures will be at elevation +15 feet mean sea level (msl) and supported on 36-inch diameter steel pipe piles.

1.2 Purpose and Scope of Exploration

The purpose of our geotechnical exploration was to evaluate the subsurface conditions at the site through review of available data and exploratory borings, in order to provide geotechnical recommendations to aid in design and construction for the project as currently proposed.

The scope of work includes the following tasks:

- **Background Review** – A background review was performed of readily available, relevant geotechnical and geological literature pertinent to the project site, References reviewed in preparation of this report are listed in Section 7.0.

- **Field Exploration** – Our field exploration was performed on July 24, 25, and 26, 2018, and consisted of three (3) rotary wash borings (designated B-1 through B-2). B-1 and B-2 were drilled to approximate depths of 123.5 and 118.0 feet below the seafloor (corresponding elevations of -151.5 and -150 msl). Boring B-3-1 (at North Mooring Dolphin) encountered drilling refusal at
approximate depth of 22 feet below the seafloor (Elevation -52 msl). Consequently, the drilling activities was relocated approximately 100 feet to the east and drilled to a depth of 98 feet below seafloor (Elevation -130 msl). The new boring was designated as B-3-2.

During drilling of the rotary wash borings, drive samples were obtained from the borings for geotechnical laboratory testing. Tube and ring samples were collected from the borings using a Thin-Walled Steel Sample Tubes (Shelby Tubes) and Modified California Ring sampler conducted in accordance with ASTM Test Method D 1587 and D 3550. Standard Penetration Tests (SPTs) were also performed within the rotary wash borings in accordance with ASTM Test Method D 1586. The tube samples were pushed/driven for a total penetration of 24 inches and the ring and SPT samplers were driven for a total penetration of 18 inches using a 140-pound automatic hammer falling freely for 30 inches. The number of blows per 6 inches of penetration was recorded on the boring logs.

The borings were logged in the field by members of our technical staff. Each soil sample collected was reviewed and described in general accordance with the Unified Soil Classification System (USCS). The samples were sealed and packaged for transportation to our laboratory. After completion of drilling, the borings were backfilled with cement grout per the approved well permit from the City of Long Beach. The boring logs are presented in Appendix A, *Field Exploration Logs*.

- **Geotechnical Laboratory Testing** – Laboratory tests were performed on representative soil samples to evaluate geotechnical engineering properties of subsurface materials. The following laboratory tests were performed:
 - In-situ Moisture Content and Dry Density (ASTM D2216 and ASTM D2937);
 - Sieve Analysis (ASTM D 422);
 - Atterberg Limits (ASTM D 4318);
 - Direct Shear (ASTM D 3080); and
 - Consolidated-Undrained Triaxial Compression Test (ASTM D 4767).

The results of the laboratory tests are presented in Appendix B – *Geotechnical Laboratory Test Results*.
• *Engineering Analysis* – Geotechnical analysis was performed on the collected data to develop conclusions and recommendations for design and construction of the planned improvements.

• *Report Preparation* - This geotechnical report presents our findings, conclusions, and recommendations.

It should be noted that the recommendations in this report are subject to the limitations presented in Section 6.0 of the report.
2.0 GEOTECHNICAL FINDINGS

2.1 Geologic Setting

The site is located within the Peninsular Ranges geomorphic province of California in the southwestern margin of the Los Angeles Basin and east of the Palos Verdes Peninsula. The Peninsular Ranges province extends approximately 900 miles southward from the Santa Monica Mountains to the tip of Baja California (Yerkes, et al., 1965) and is characterized by elongated, northwest-trending mountain ridges and sediment-floored valleys. The province includes numerous northwest trending fault zones, most of which either die out, merge with, or are terminated by faults that form the southern margin of the Transverse Ranges province. These northwest trending fault zones include the San Jacinto, Whittier-Elsinore, Palos Verdes, and Newport-Inglewood fault zones.

Approximately 65 million years ago (at the end of the Cretaceous Period) a deep, structural trough existed off the coast of southern California (Yerkes, 1972). Over time the trough was filled with sediments eroded from the surrounding highlands and mountains. About 7 million years ago the boundary between the Pacific and North American plates shifted to its present position and the geologically modern Los Angeles basin began to form. The deepest part of the Los Angeles basin contains Tertiary to Quaternary-aged (65 million years and younger) marine and nonmarine sedimentary rocks that are about 24,000 feet thick (Yerkes, et al., 1965; Wright, 1991). During the Pleistocene epoch (the last two million years) the region was flooded as the sea level rose in response to the worldwide melting of the Pleistocene glaciers.

The project site is located in Long Beach Harbor approximately 7.5 miles to the east of the Palos Verdes Hills near the mouth of the Los Angeles River channel. Long Beach Harbor lies on the edge of a broadly elevated coastal terrace on the southern edge of the Los Angeles Basin. This terrace has been deeply dissected by the Los Angeles River in response to the sharply lowered sea levels during the last global glaciation, approximately 20,000 years ago. The channel incision, known locally as the Dominguez Gap, was several hundred feet deep. With the Waning of the continental glaciers, it has been filled with alluvial channel and flood plain sediments as the Los Angeles River adjusted its grade to accommodate the resultant rise in sea level. Modern sea level was reached roughly 6,000 years ago. Regional geologic mapping of the project site and vicinity indicates that near-surface soils beneath the site consist of recent artificial fill (Saucedo et al., 2003;
CGS, 2010). The surficial geologic units mapped in the vicinity of the project site are shown on Figure 3, Regional Geology Map.

2.2 Subsurface Soil Conditions

Our field exploration consisted of drilling and sampling a total of four (4) mud-rotary borings (B-1, B-2, B-3-1, and B-3-2) to a maximum depth of approximately 125 feet below seafloor (bsf). Drilling was conducted overwater on a drill ship operated by Gregg Drilling between July 24 and July 26, 2018.

Based on our subsurface exploration, tidal deposits were encountered in boring B-1 and B-2 to a depth of 23 feet and 18 feet bsf, respectively. Refusal was encountered immediately beneath approximately 22 feet of dredge fill at B-3-1. Consequently, drilling operations were relocated approximately 100 feet to the east to B-3-2 where dredge fill was encountered to a depth of approximately 50 feet bsf. Underlying the tidal deposits or dredge fill to the maximum depth of exploration is the native alluvium. Descriptions of the subsurface soils encountered in our borings are as follows:

Tidal Deposits/Dredge Fill: The materials consist of very soft to soft or loose to medium dense silt, clayey silt/silty clay, and silty sand. Based on review of the soil behavior type index (i.e., Ic) from the previous CPTs (By Leighton 2017 and 2018), it suggested that most of the dredge fill and the tidal flat deposits behave mainly as “clay-like” soils. It is consistent with the soil samples retrieved from the soil borings.

Native Alluvium: The native alluvium underlying the tidal deposits and dredge fill consists of interbedded dense to very dense sand to stiff to very stiff silt, clay, and silty clay.

The stratigraphy of the subsurface soils encountered in each soil boring is presented in the Appendix A, Field Exploration logs.
3.0 SEISMIC AND GEOLOGIC HAZARDS ASSESSMENTS

3.1 Surface Fault Rupture

The project site is located near the eastern end of the 45-acre Queen Mary Complex at Pier J in the Port of Long Beach (POLB), Long Beach, California (Figure 1, Site Location Map). Our review of available in-house literature indicates that no known active faults have been mapped across the site, and the site is not located within a designated Alquist-Priolo Earthquake Fault Zone (CGS, 1986; Bryant and Hart, 2007). Therefore, the potential for surface fault rupture at the site is expected to be low and a surface fault rupture hazard evaluation is not mandated for this site.

The location of the closest active faults to the site was evaluated using the United States Geological Survey (USGS) Earthquake Hazards Program National Seismic Hazard Maps (USGS, 2008). The closest active faults to the site are the Newport-Inglewood Fault Zone (NIFZ), Palos Verdes fault and the Puente Hills fault, located approximately 3.4 miles, 3.5 miles and 11.1 miles from the site, respectively. The Puente hills fault is a blind thrust fault that is concealed at depth, without the potential for surface fault rupture. The San Andreas fault, which is the largest active fault in California, is approximately 51 miles northeast of the site. Major regional faults with surface expression in proximity to the site are shown on Figure 4, Regional Fault and Historical Seismicity Map.

The THUMS-Huntington Beach fault is located to the southwest of the project site, splays southeastward from the onshore portion of the Palos Verdes fault. This fault forms the southwestern border of the Wilmington and Huntington Beach anticlines where it extends southeastward from the Huntington Beach anticline merging with the Newport-Inglewood fault zone (Ishutov, 2013). This fault does not pose a surface rupture hazard to the project site.

3.2 Strong Ground Shaking

The site is located within a 62-mile (100 kilometers) radius of several major faults in the region (Figure 4). Earthquakes occur along one of these major faults are expected to generate moderate to strong ground shaking at the site. The current (2016) code-based Maximum Considered Earthquake (MCE) corresponds to an earthquake event with a probability of exceedance of 2 percent in 50 years (i.e., 2475-year return period).
Based on review of the Port-wide Ground Motion Study Report (EMI, 2015), the shear wave velocity in the vicinity of the site is on the order of 150 meters per second (m/sec). It corresponds to a Site Class E soil profile based on California Building Code (CBC, 2016). Using a Site Class E profile, the spectral accelerations at five percent structural damping for the Design Earthquake and risk-targeted MCE are presented in the Table below. These parameters were calculated based on the general procedures of the 2016 CBC using the USGS U.S. Seismic Design Map Tool (USGS 2016a).

Table 1 - 2016 CBC Spectral Acceleration Parameters

<table>
<thead>
<tr>
<th>Categorization/Coefficient</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Latitude</td>
<td>33.7515°</td>
</tr>
<tr>
<td>Site Longitude</td>
<td>-118.1871°</td>
</tr>
<tr>
<td>Site Class</td>
<td>E</td>
</tr>
<tr>
<td>Mapped Spectral Response Acceleration at Short Period (0.2 sec), S_S</td>
<td>1.589g</td>
</tr>
<tr>
<td>Mapped Spectral Response Acceleration at Long Period (1 sec), S_1</td>
<td>0.598g</td>
</tr>
<tr>
<td>Short Period (0.2 sec) Site Coefficient, F_a</td>
<td>0.9</td>
</tr>
<tr>
<td>Long Period (1 sec) Site Coefficient, F_v</td>
<td>2.4</td>
</tr>
<tr>
<td>Adjusted Spectral Response Acceleration at Short Period (0.2 sec), S_{MS}</td>
<td>1.430g</td>
</tr>
<tr>
<td>Adjusted Spectral Response Acceleration at Long Period (1 sec), S_{M1}</td>
<td>1.434g</td>
</tr>
<tr>
<td>Design Spectral Response Acceleration at Short Period (0.2 sec), S_{DS}</td>
<td>0.953g</td>
</tr>
<tr>
<td>Design Spectral Response Acceleration at Long Period (1 sec), S_{D1}</td>
<td>0.956g</td>
</tr>
<tr>
<td>Mapped Geometric Mean MCE Peak Ground Acceleration, PGA</td>
<td>0.622g</td>
</tr>
</tbody>
</table>

All were derived from the USGS web page: http://earthquake.usgs.gov/designmaps/us/application.php

In accordance with Section 11.8.3 of ASCE Standard 7-10, the mapped geometric mean peak ground acceleration (PGA) is 0.622g for the site. For a Site Class E, the F_PGA is 0.9 and the mapped peak ground acceleration adjusted for Site Class effects (PGA$_M$) is 0.56g.

By deaggregating the peak ground acceleration with respect to magnitude and distance, the MCE at the site will most likely a magnitude 7.4 event occurring approximately 3.5 miles from the site (USGS, 2016b). The seismicity data are included in Appendix C.
3.3 **Historical Seismicity**

Although Southern California has been seismically active during the past 200 years, written accounts of only the strongest shocks survive the early part of this period. Early descriptions of earthquakes are rarely specific enough to allow an association with any particular fault zone. It is also not possible to precisely locate epicenters of earthquakes that have occurred prior to the twentieth century.

A search of historical earthquakes was performed using the computer program EQ Search (Blake, 2000) for the time period between 1800 and 2016. Within that time frame 526 earthquakes between magnitude 4.00 and 9.0 were found within a 62-mile (100-kilometer) radius of the site. Of these earthquakes, the closest was an earthquake located 0.5 mile (0.8 kilometer) from the site, and occurred on August 4, 1933. Although not precisely located, the epicenter for this earthquake event is located to the east of the project site. The earthquake registered magnitude 4.0 Mw and induced an estimated peak ground acceleration (PGA) of 0.153g at the project site.

There are records of three earthquakes with a magnitude 7.0 or larger within the search performed, which were magnitude 7.0 Mw earthquakes that occurred on December 8, 1812, September 24, 1827 and December 16, 1858. The largest PGA at the site is estimated to have been roughly 0.232g from the magnitude 5.4 Mw earthquake that shook the region on November 14, 1941. For a general view of recorded historical seismic activity see Figure 4, *Regional Fault and Historical Seismicity Map*.

Review of additional data available from the Center for Engineering Strong Motion Data (CESMD) website (http://strongmotioncenter.org/) indicates that the highest recorded ground acceleration in the vicinity of the project site was 0.70g for a station located approximately 3,000 feet northwest from the site. The recorded ground acceleration was from the magnitude 6.4Mw Northridge earthquake that occurred on January 17, 1994.

3.4 **Liquefaction Potential**

Liquefaction is loss of soil shear strength due to a build-up of pore water pressure during severe ground shaking. Soils most susceptible to liquefaction are clean and uniformly graded, loose, saturated fine-grained sands. Additionally loose and saturated fine grained soil deposits can behave like liquid due to loss of strength and stiffness during or shortly after prolonged strong earthquake ground motions.
Where sloping ground conditions are present, soil liquefaction or loss of strength can result in ground instability (i.e., lateral spread or flow failure).

As shown on the State of California Seismic Hazard Zones Map for the Long Beach Quadrangle (CGS, 1999), the site is mapped within an area that has been identified as being susceptible to liquefaction (Figure 5, Seismic Hazard Map).

The site for the existing pier structure and the proposed new improvements consist of 20 to 25 feet of dredge fill and tidal deposits overlying alluvium (i.e., native alluvium). Based on our subsurface exploration, the dredged fill and tidal deposits beneath the site generally consist of very soft to soft or loose to medium dense layers of silt, sand, and clay. Previous laboratory test and analysis by Leighton suggested that the materials are prone to liquefaction and/or loss of strength during the strong ground motions from earthquakes anticipated at the site. The native alluvium soils below the dredge fill and tidal deposit consist of dense to very dense silty sand and stiff to very stiff silt, sandy silt, and silty clay. Given the dense to very dense nature of the underlying native alluvium, these soils are not considered susceptible to liquefaction.

The potential impacts of soil liquefaction on the project site are discussed below.

Ground Settlement: Based on our analysis, the dredge fill and tidal deposits are considered to be susceptible to liquefaction-induced settlement during strong ground motions due to earthquakes. Based on our experience and exploration for other Carnival Cruise Line’s projects in the vicinity of this site (Leighton 2017 and 2018), the materials are anticipated to behave primarily as “clay-like” soils. Due to the “clay-like” behavior of the soil materials, the seismically-induced settlement is not anticipated to be excessive. However, any settlement that will occur will impose additional loads (i.e., downdrag) on the existing and new piles, during an earthquake event.

Loss of Bearing Strength: The shear strength of the dredge fill and the tidal flat deposits will be partially loss due to liquefaction. The strength loss in the materials should be considered in the design of the pile foundation supporting the existing pier and the proposed new structures. The shear strength of the underlying native alluvium is not expected to be degraded during earthquake shaking.

Lateral Ground Displacement: The dredge fill and the tidal deposits are susceptible to lateral spread resulted from liquefaction due to loss of strength and stiffness in the soils during and shortly after an earthquake. The lateral
displacement of the materials should be considered in the design of the pile foundation supporting the pier and the proposed new structures.

The calculations of lateral ground displacement due to liquefaction was performed using the Newmark sliding block (Newmark 1965) model. For the purpose of this report, the slinging mass was considered rigid. Using the rigid block model developed by Bray and Travasarou (2007), the maximum lateral displacements of the dredge fill and tidal deposits was estimated to be on the order of 30 inches.

3.5 **Seismically-Induced Landslides**

Based on the State of California Seismic Hazard Zones Map for the Long Beach Quadrangle (CGS, 1999), the site is not located within an area that has been identified by the State of California as being potentially susceptible to seismically induced landslides (Figure 5, *Seismic Hazard Map*).

3.6 **Flood Hazard**

According to a Federal Emergency Management Agency (FEMA) flood insurance rate map (FEMA, 2008), the site is not located within a flood hazard zone (Figure 6, *Flood Hazard Zone Map*). Flooding in the vicinity of the project site is generally isolated to the Queensway Bay located to the north of the project site. Therefore, the effect of regional flooding affecting the site is considered negligible.

3.7 **Seiches and Tsunamis**

As shown on Figure 7, *Tsunami Inundation Map*, the project site is located within a tsunami inundation area identified by the California Emergency Management Agency and the California Geological Survey (CGS, 2009). Based on the Tsunami Hazard Assessment for the Port of Long Beach report (Moffatt & Nichol, 2007), the maximum water level in Pier J produced by the Santa Catalina 7-segment scenario is approximately 10 feet (3.13 m) msl which should be taken into consideration for design and construction of the proposed new dolphin and gangway expansion tower structure.
4.0 FINDINGS AND CONCLUSIONS

No apparent evidence of adverse geological or geotechnical hazards was noted at the site that will preclude the development of the project. Presented below is a summary of findings based upon the results of our geotechnical evaluation of the site:

- The site is likely to experience moderate to strong earthquake. The most probable code-based earthquake event is a 7.4 magnitude earthquake occurring at approximately 3.5 miles from the site.

- The site is mapped within an area shown as susceptible to liquefaction on the California Seismic Hazard Zones Map for the Long Beach Quadrangle. Based on previous exploration by Leighton in the immediate vicinity of the pier, the dredge fill and tidal deposits are susceptible to loss of strength and stiffness when subject to ground shaking.

- The seismically-induced settlement of the tidal deposits and dredge fill at the site is not expected to be excessive but it will impose downdrag to the existing and new piles.

- The maximum lateral displacement of the tidal deposits and dredge fill due to ground shaking was estimated to be approximately 30 inches.

- Concrete elements in contact with the seawater, shall be designed for extreme marine environment. The onsite environment is also considered corrosive to ferrous metal.
5.0 DESIGN RECOMMENDATIONS

Geotechnical recommendations for the proposed additions are presented in the following sections and are intended to provide sufficient geotechnical information to develop the project in general accordance with Port of Long Beach Wharf Design Criteria, 2015 and 2016 CBC requirements. The following recommendations should be considered minimal from a geotechnical viewpoint as there may be more restrictive requirements of the architect, structural engineer, governing agencies and the City of Long Beach.

The geotechnical consultant should review the foundation plan and specifications as they become available to verify that the recommendations presented in this report have been incorporated into the plans prepared for the project.

5.1 Foundation Recommendations

Soil Profile and Shear Strength: The idealized soil profile and shear strength parameters for analyzing the existing piles and design of new deep foundations are presented in Table 2 below:

It should be noted that the dredge fill thickness at the North Mooring Dolphin was assumed as the same dredge fill thickness at Boring B-3-1 when drilling refusal was encountered (i.e., 22 feet bsf). The listed shear strength parameters were derived primarily based on laboratory test results from current and previous exploration by Leighton (2017 and 2018).
Table 2 - Idealized Soil Profile and Strength Parameters

<table>
<thead>
<tr>
<th>Locations</th>
<th>Elevations</th>
<th>Predominant Soil Types</th>
<th>Effective Unit Weight (pcf)</th>
<th>Friction Angle (degree)</th>
<th>Undrained Shear Strength (psf)</th>
<th>Strain ε_{50}</th>
<th>k (pci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Mooring Dolphin</td>
<td>-28 to -51</td>
<td>Soft Clay with Free Water (Tidal Deposits and dredge fill)</td>
<td>38.4</td>
<td>N/A</td>
<td>0 to 150 S 0 to 315 L 0 to 610 U</td>
<td>0.07</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>-51 to -76.5</td>
<td>API Sand</td>
<td>61.1</td>
<td>38-41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-76.5 to -111</td>
<td>Stiff Clay with Free Water</td>
<td>62.0</td>
<td></td>
<td>1,667 to 2,952 L 1,835 to 3,070 U</td>
<td>0.03</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>-111 to -141.5</td>
<td>API Sand</td>
<td>61.1</td>
<td>38-41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-141.5 to -151.5</td>
<td>Stiff Clay with Free Water</td>
<td>62.0</td>
<td>N/A</td>
<td>4,145 to 4,500 U</td>
<td>0.03</td>
<td>1,000 static 800 Cyclic</td>
</tr>
<tr>
<td>Gangway Tower</td>
<td>-32 to -50</td>
<td>Soft Clay with Free Water (Tidal Deposits and dredge fill)</td>
<td>38.4</td>
<td>N/A</td>
<td>0 to 150 S 0 to 280 L 0 to 510 U</td>
<td>0.07</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>-50 to -84</td>
<td>API Sand</td>
<td>61.1</td>
<td>38-41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-84 to -105</td>
<td>Stiff Clay with Free Water</td>
<td>62.0</td>
<td></td>
<td>1,864 to 2,646 L 2,023 to 2,775 U</td>
<td>0.03</td>
<td>1,000 static 400 Cyclic</td>
</tr>
<tr>
<td></td>
<td>-105 to -150</td>
<td>API Sand</td>
<td>61.1</td>
<td>38-41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Mooring Dolphin</td>
<td>-32 to -54</td>
<td>Soft Clay with Free Water (Tidal Deposits and dredge fill)</td>
<td>38.4</td>
<td>N/A</td>
<td>0 to 150 S 0 to 519 L 0 to 655 U</td>
<td>0.10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>-54 to -89.5</td>
<td>API Sand</td>
<td>61.1</td>
<td>38-41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-89.5 to -109.5</td>
<td>Stiff Clay with Free Water</td>
<td>62.0</td>
<td></td>
<td>2,011 to 2,756 L 2,236 to 2,650 U</td>
<td>0.03</td>
<td>1,000 static 400 Cyclic</td>
</tr>
<tr>
<td></td>
<td>-109.5 to -130</td>
<td>API Sand</td>
<td>61.1</td>
<td>38-41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- S: Seismic Loading
- L: Lower Bound
- U: Upper bound

- All values are nominal.
- The recommended values above are for 36-inch diameter pipe piles.
Downward Pile Capacity: The downward capacity of the 36-inch diameter steel pipe piles was calculated using the computer software APILE (Ensoft 2018). In our analysis, we assume a soil plug will start to develop inside the pipe piles at a penetration to diameter ratio of 20 (FHWA 2016). Based on the information presented in Table 2, the lower bound pile ultimate capacity curves for a single 36-inch diameter pile for each new structure are presented on Figures 8 through 10. The following notes should be taken into consideration when using the figures:

- All curves were developed for nominal capacity (i.e., no load factor was used in calculating the capacity).
- The downward capacity curves were developed for seismic loading conditions when the frictional resistance in the tidal deposits and dredge fill are temporarily loss due to liquefaction (i.e., resistance to downward load was derived only from the section of the pile embedded in the native alluvium).
- The down drag load resulted from the settling soils as shown on the figures should be added to the design load.
- The tension capacity curves were developed for service load condition.
- No reduction in capacity is required if the piles are spaced at a minimum of 3 times its diameter on center.
- A safety of 2 is recommended for allowable stress design.
- The equivalent spring constant shown is applicable for both service loading and seismic loading.

Lateral Load Capacity: As requested by Atkins, p-y curves were developed along the piles for analyzing the response of the piles under lateral loads. The p-y curves coordinates at each new structure locations are included in Appendix D, p-y Curves Coordinates.

In addition to develop the p-y curves for analyzing the response of the 36-inch pipe piles, we also evaluate the kinematic loading from displacement of the submarine slope due to seismic shaking for analyzing the pipe piles as well as the existing 24-inch prestressed concrete piles. Following the procedures described in the Wharf Design Manual (Long Beach 2015), the lateral displacement of the post-dredging submarine slope under the MCE was estimated to be on the order of 30 inches.
5.2 **Construction Consideration**

We recommend additional exploration be performed to determine the probable cause of drilling refusal encountered at Boring B-3-1 and the extent of refusal near the North Mooring Dolphin. Based on the location of the boring relative to the existing Queen Mary rock dike, the proposed mooring dolphin may be located within the footprint of the dike. Due to the relatively thick layer of dredge fill encountered in boring B-3-2 (i.e. approximately 50 feet), relocating the North Mooring Dolphin to the vicinity of the boring is not recommended. Additionally, it is recommended that an indicator pile program be performed during the exploration. The program should include dynamic pile load test to verify the pile capacity, driving resistance, and drivability. Prior to implementing the indicator pile program, a wave equation analysis should also be performed to select the proper pile-hammer system for driving the piles to the specified depth.

Pile installation should be performed in accordance with the latest edition of Section 305 of the *Standard Specifications for Public Works Construction*, ("Greenbook"), 2015 Edition.
6.0 LIMITATIONS

This report was based solely on data obtained from a limited number of geotechnical exploration, and soil samples and tests. Such information is, by necessity, incomplete. The nature of many sites is such that differing soil or geologic conditions can be present within small distances and under varying climatic conditions. Changes in subsurface conditions can and do occur over time. Therefore, the findings, conclusions, and recommendations presented in this report are only valid if Leighton has the opportunity to observe subsurface conditions during grading and construction, to confirm that our preliminary data are representative for the site. Leighton should also review the construction plans and project specifications, when available, to comment on the geotechnical aspects.

This report was prepared using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. The findings, conclusion, and recommendations included in this report are considered preliminary and are subject to verification. We do not make any warranty, either express or implied.
7.0 REFERENCES

Blake, T.F, 2000, EQSEARCH, A computer program for the estimate of Peak Horizontal Acceleration from California Historical Earthquake Catalogs, with Earthquake Catalog Data through January 29, 2015.

California Geological Survey (CGS; formerly California Division of Mines and Geology, CDMG), 1986, State of California Special Studies Zones Long Beach Quadrangle, Revised Official Map, effective July 1, 1986, map scale 1:24,000.

_____ , 2009, Tsunami Inundation Map for Emergency Planning, Long Beach Quadrangle, Los Angeles County, California, dated March 1, 2009, map scale 1:24,000.

_____ , 2010, Geologic Compilation of Quaternary Surficial Deposits in Southern California, Onshore Portion of the Long Beach 30'x60' Quadrangle, CGS Special Report 217, Plate 8, map scale 1:100,000, dated July 2010.

Ensoft, 2018, “APILE, A Program for the Analysis of the Axial Capacity of Driven Piles”
Ensoft, 2018, “LPILE, A Program for the Analysis of Piles and Drilled Shafts Under Lateral Loads”

Port of Long Beach, Wharf Design Criteria, 2015, POLB WDC Version 4.0.

United States Geological Survey (USGS), 1964, Photorevised 1981, Long Beach Quadrangle, California, Los Angeles County, 7.5 Minute Series (Topographic Series), map scale 1:24,000.

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative – interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read it in its entirety. Do not rely on an executive summary. Do not read selected elements only. Read this report in full.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, always inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. If your geotechnical engineer has not indicated an “apply-by” date on the report, ask what it should be, and, in general, if you are the least bit uncertain about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the “Findings” Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed. The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.
This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are not final, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations only after observing actual subsurface conditions revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnical-engineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

• confer with other design-team members,
• help develop specifications,
• review pertinent elements of other design professionals' plans and specifications, and
• be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, but be certain to note conspicuously that you’ve included the material for informational purposes only. To avoid misunderstanding, you may also want to note that “informational purposes” means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled “limitations,” many of these provisions indicate where geotechnical engineers’ responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a “phase-one” or “phase-two” environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated subsurface environmental problems have led to project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer’s recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.
Figure 2.1

LEGEND

- 49-LTE-61 Borings by L.T. Evans (1949)
- CPT-4 Cone Penetration Test by Leighton, May 2018
- LB-1 Boring by Leighton, May 2018
- CPT-3 Cone Penetration Test by Leighton, February 2017
- RB-3 Boring by Leighton, February 2017

Existing Carnival Cruise Line Terminal

Boring locations are approximate
Qoa, Old Alluvial Valley Deposits
Qol, Old Lacustrine, Playa and Estuarine (Paralic) Deposits

Legend
af, Artificial Fill
Qya, Young Alluvial Valley
Qyf, Young Alluvial Fan
Qoa, Old Alluvial Valley Deposits
Qol, Old Lacustrine, Playa and Estuarine (Paralic) Deposits

Approximate Site Location

REGIONAL GEOLOGY MAP
Canival Cruise Line Terminal Sites/ POLB
Long Beach, California
Legend
- Historic (<200 years)
- Holocene (<10K years)
- Quaternary (<1.6M years)
- Pre-Quaternary (>1.6M years)

Earthquakes 1769-2014
Moment Magnitude Range
- 4 - 5
- 5 - 6
- 6 - 7

REGIONAL FAULT AND HISTORIC SEISMICITY MAP
Canival Cruise Line Terminal Sites/ POLB
Long Beach, California
FLOOD HAZARD ZONE MAP
Canival Cruise Line Terminal Sites/POLB
Long Beach, California

Legend
- 500 Year Flood Plain
- 100 Year Flood Plain

Approximate Site Location

Figure 6
Ultimate Axial Capacity (kips)
Single 36-inch Open-Ended Pipe Pile

-65.0
-75.0
-85.0
-95.0
-105.0
-115.0
-125.0
-135.0
0 500 1000 1500 2000

Compression Tension

Pile Cut-off Elev. 11 feet
Sea floor Elev. -32 feet
Pile Tip Elev. -130 feet
Downdrag : 28.6 kips during seismic event

Soil Plug begins at Elev. -92 feet
Composite Spring Constant : 1,490 kips/in

Figure 8

Carnival Cruise Line Pier Expansion
North Mooring Dolphin
Port of Long Beach, Long Beach, California

Project Number: 12096.001 Date: December 2018
Ultimate Axial Capacity (kips)
Single 36-inch Open-Ended Pipe Pile

- Compression
- Tension

Pile Cut-off Elev. -11 feet
Seafloor Elev. -28 feet
Pile Tip Elev. -125 feet
Downdrag: 31.1 kips during seismic event

Soil Plug begins at Elev. -88 feet
Composite Spring Constant: 1,460 kips/in
Ultimate Axial Capacity (kips)
Single 36-inch Open-Ended Pipe Pile

Pile Cut-off Elev. 11 feet
Sea floor Elev. -32 feet
Pile Tip Elev. -125 feet
Down drag force: 19.1 during seismic event

Soil Plug begins at Elev. -92 feet
Composite Spring Constant: 1,500 kips/in

Elevation (ft, msl)
0 500 1000 1500 2000 2500

Figure 10

Carnival Cruise Line Pier Expansion
Gangway Tower
Port of Long Beach, Long Beach, California

Project Number: 12096.001 Date: December 2018
APPENDIX A
Field Exploration Logs
A-1
“Carnival Cruise Line Terminal”
By L.T. Evans (1949)
<table>
<thead>
<tr>
<th>Layer</th>
<th>φ</th>
<th>C</th>
<th>d_e</th>
<th>D_e</th>
<th>D_r</th>
<th>C_s</th>
<th>Eaw</th>
<th>Eum</th>
<th>k</th>
<th>LL</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium sand</td>
<td>39° 00'</td>
<td>0</td>
<td>2.66</td>
<td>119.6</td>
<td>97.4</td>
<td>87.8</td>
<td>0.705</td>
<td>1.100</td>
<td>0.650</td>
<td>70×10⁻⁴</td>
<td>NA</td>
</tr>
<tr>
<td>Fine sand</td>
<td>38° 30'</td>
<td>0</td>
<td>2.67</td>
<td>119.2</td>
<td>93.5</td>
<td>100.0</td>
<td>0.782</td>
<td>1.260</td>
<td>0.782</td>
<td>14×10⁻⁴</td>
<td>NA</td>
</tr>
<tr>
<td>Lost all samples due to cave in of holes</td>
<td></td>
</tr>
<tr>
<td>Clayey silt</td>
<td>24° 00'</td>
<td>400</td>
<td>2.71</td>
<td>123.1</td>
<td>94.8</td>
<td>0.784</td>
<td>0.06×10⁻⁴</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>28° 00'</td>
<td>0</td>
<td>2.68</td>
<td>123.3</td>
<td>95.1</td>
<td>0.755</td>
<td>0.004×10⁻⁴</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very fine to fine sand</td>
<td>41° 00'</td>
<td>0</td>
<td>2.70</td>
<td>124.0</td>
<td>96.0</td>
<td>90.7</td>
<td>0.752</td>
<td>1.260</td>
<td>0.700</td>
<td>20×10⁻⁴</td>
<td>NA</td>
</tr>
<tr>
<td>Very fine sand</td>
<td>40° 00'</td>
<td>0</td>
<td>2.69</td>
<td>123.8</td>
<td>96.0</td>
<td>96.0</td>
<td>0.748</td>
<td>1.125</td>
<td>0.707</td>
<td>1.0×10⁻⁴</td>
<td>NA</td>
</tr>
<tr>
<td>Layer Description</td>
<td>ϕ</td>
<td>C</td>
<td>G</td>
<td>D_0</td>
<td>D_a</td>
<td>P_e</td>
<td>Curve</td>
<td>C_m</td>
<td>k</td>
<td>L</td>
<td>P_L</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Fine sand</td>
<td>$38^\circ 35'$</td>
<td>0</td>
<td>2.66</td>
<td>122.2</td>
<td>91.6</td>
<td>81.1</td>
<td>0.812</td>
<td>1.250</td>
<td>0.710</td>
<td>12×10^{-4}</td>
<td>NA</td>
</tr>
<tr>
<td>Medium sand</td>
<td>$39^\circ 40'$</td>
<td>0</td>
<td>2.67</td>
<td>117.5</td>
<td>92.5</td>
<td>71.3</td>
<td>0.801</td>
<td>1.150</td>
<td>0.660</td>
<td>55×10^{-4}</td>
<td>NA</td>
</tr>
<tr>
<td>Fine to medium sand</td>
<td>$40^\circ 00'$</td>
<td>0</td>
<td>2.66</td>
<td>118.7</td>
<td>90.3</td>
<td>72.4</td>
<td>0.838</td>
<td>1.200</td>
<td>0.700</td>
<td>60×10^{-4}</td>
<td>NA</td>
</tr>
<tr>
<td>Silty medium sand</td>
<td>$39^\circ 40'$</td>
<td>0</td>
<td>2.67</td>
<td>120.6</td>
<td>91.1</td>
<td>76.7</td>
<td>0.829</td>
<td>1.220</td>
<td>0.710</td>
<td>40×10^{-4}</td>
<td>NA</td>
</tr>
<tr>
<td>Very fine to fine sand</td>
<td>$39^\circ 30'$</td>
<td>0</td>
<td>2.68</td>
<td>116.6</td>
<td>97.5</td>
<td>96.3</td>
<td>0.715</td>
<td>1.125</td>
<td>0.700</td>
<td>8×10^{-4}</td>
<td>NA</td>
</tr>
<tr>
<td>Compacted siltstone</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A-2
“Carnival Cruise Line Terminal 66kV Line Service Substation”

By Leighton Consulting, Inc.
(February, 2017)
Geotechnical Boring Log RB-1

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Log</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per Six Inches</th>
<th>Dry Density pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Sample Types</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>BB1</td>
<td>SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CR, RV, SA</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>R1</td>
<td>1 3 3</td>
<td>80</td>
<td>37</td>
<td>ML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>S1</td>
<td>Push Push</td>
<td></td>
<td></td>
<td>CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>R2</td>
<td>1 1 1 3</td>
<td></td>
<td></td>
<td>@10': CLAY, dark gray, wet, very soft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td></td>
<td></td>
<td></td>
<td>R3</td>
<td>1 1 1 3</td>
<td></td>
<td></td>
<td>@15': No Recovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>S2</td>
<td>1/18</td>
<td></td>
<td></td>
<td>@16.5': No Recovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>R4</td>
<td>Push 1 2</td>
<td></td>
<td></td>
<td>@20': CLAY, dark gray, very soft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>@25': CLAY, disturbed, sand catcher used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- BULK SAMPLE
- GRAB SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- DIRECT SHEAR
- SIEVE ANALYSIS
- SAND EQUIVALENT
- SPECIFIC GRAVITY
- UNCONFINED COMPRESSIVE STRENGTH

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>SM</td>
<td>@30': Silty SAND, gray, wet, loose, fine grained sand</td>
</tr>
<tr>
<td>S4</td>
<td>CL</td>
<td>@32.5': Medium dense, some fine shell fragments</td>
</tr>
<tr>
<td>S5</td>
<td>CL</td>
<td>@35': CLAY, gray, wet, very soft</td>
</tr>
<tr>
<td>S6</td>
<td>ML</td>
<td>@45': SILT, gray, wet, soft, micaceous</td>
</tr>
<tr>
<td>S7</td>
<td>CL/SM</td>
<td>@47.5': Interlayered CLAY and Silty fine SAND, gray, wet, soft/loose, micaceous</td>
</tr>
<tr>
<td>S8</td>
<td>SM</td>
<td>@50': Silty fine SAND, gray, wet, medium dense, fine grained sand, micaceous</td>
</tr>
<tr>
<td>S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>CL</td>
<td>@55': CLAY, gray to dark gray, wet, very soft, organic odor from dark gray material</td>
</tr>
<tr>
<td>S14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mudline or Tidal Flat Deposits

@55': CLAY, gray to dark gray, wet, very soft, organic odor from dark gray material
Geotechnical Boring Log RB-1

Project No.: 11564.001
Date Drilled: 2-10-17
Logged By: JMP
Drilling Co.: Socal Drilling CO.
Hole Diameter: 4+3/4"
Drilling Method: Rotary Wash - 140lb - Autohammer - 30" Drop
Location: See Plate 1 - Geotechnical Exploration Map
Ground Elevation: ~20.8'

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Long</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>S15</td>
<td></td>
<td></td>
<td></td>
<td>2, 3, 7</td>
<td>@60': CLAY, dark gray, soft to medium stiff, wet, slight organic odor</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>S16</td>
<td></td>
<td></td>
<td></td>
<td>12, 16, 17</td>
<td>@62.5': Silty SAND, gray, wet, medium dense to dense, fine to medium grained sand, abundant shell fragments</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>S17</td>
<td></td>
<td></td>
<td></td>
<td>12, 16, 20</td>
<td>Quaternary Alluvium</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>S18</td>
<td></td>
<td></td>
<td></td>
<td>17, 25, 34</td>
<td>@@67.5': Silty SAND, yellow brown, very moist, very dense, fine grained sand</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>S19</td>
<td></td>
<td></td>
<td></td>
<td>19, 32, 39</td>
<td>@ 70': same as above (29.1% passing #200)</td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- 200 % FINES PASSING
- D-160 DIRECT SHEAR
- ATTERBERG LIMITS
- CONSOLIDATION
- COLLAPSE
- CORROSION
- UNDRAINED TRIAXIAL

SOIL DESCRIPTION
This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Total Depth of Boring: 71.5 feet bgs
Groundwater encountered at 13.0 feet during drilling; rose to 12.0 feet after 10 minutes.
Boring backfilled with bentonite-cement grout upon completion of drilling; capped with six-inches cold patch asphalt mix.

*** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***
GEOTECHNICAL BORING LOG RB-2

<table>
<thead>
<tr>
<th>Project No.</th>
<th>11564.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Carnival Cruise Substation</td>
</tr>
<tr>
<td>Drilling Co.</td>
<td>Socal Drilling CO.</td>
</tr>
<tr>
<td>Drilling Method</td>
<td>Rotary Wash - 140lb - Autohammer - 30" Drop</td>
</tr>
<tr>
<td>Location</td>
<td>See Plate 1 - Geotechnical Exploration Map</td>
</tr>
<tr>
<td>Date Drilled</td>
<td>2-9-17</td>
</tr>
</tbody>
</table>

Sample No.

CL/ML

CL

@5': CLAY, olive gray, wet, very soft, trace brown organics

@10': CLAY, dark gray, wet/saturated, very soft

- $LL = 49$
- $PI = 27$
- $C = 0$
- $\Phi = 21^\circ$

@15': Interlayered SILT and CLAY, gray, wet/saturated, very soft, micaceous, few gravels

@20': CLAY, gray, wet, very soft, micaceous

- $LL = 28$
- $PI = 11$
- $C = 0$
- $\Phi = 34^\circ$

Sample Types:

- **BULK SAMPLE**
- **CORE SAMPLE**
- **GRAB SAMPLE**
- **RING SAMPLE**
- **SPLIT SPOON SAMPLE**
- **TUBE SAMPLE**

Type of Tests:

- **DIRECT SHEAR**
- **SIEVE ANALYSIS**
- **SAND EQUIVALENT**
- **SPECIFIC GRAVITY**
- **UNCONFINED COMPR **

This log is a part of a report by Leighton and should not be used as a stand-alone document.
Soil Description

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Soil Sample at Various Depths

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Log</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class (U.S.C.S.)</th>
<th>Soil Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
<td>N S</td>
<td>R3</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td>SM</td>
<td>@30': Silty SAND, gray, wet, medium dense, fine grained sand, micaceous, some fine shell fragments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LL = 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI = 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UU = 2 psi at 50% strain</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td></td>
<td>S4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>CL</td>
<td>@35': Fine to medium grained sand, abundant shell fragments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(16.8% passing #200)</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td></td>
<td>R4</td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
<td>CL</td>
<td>@40': CLAY, gray, wet, soft, micaceous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LL = 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI = 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UU = 2 psi at 50% strain</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
<td></td>
<td>S5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>SM</td>
<td>@45': Silty SAND, gray, wet, medium dense, fine grained sand, micaceous, few fine shell fragments (39.1% passing #200)</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td></td>
<td>R5</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
<td>CL</td>
<td>Mudline or Tidal Flat Deposits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>@55': CLAY to Silty CLAY, gray to dark gray, very moist to wet, very soft, slight organic odor, mudline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LL = 43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI = 23</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:
- -200 % FINES PASSING
- ATTERBERG LIMITS
- CONSOLIDATION
- COLLAPSE
- CORROSION
- UNDRAINED TRIAXIAL
- DIRECT SHEAR
- EXPANSION INDEX
- HYDROMETER
- MAXIMUM DENSITY
- POCKET PENETROMETER
- UNCONFINED COMPRESSIVE STRENGTH
- SIEVE ANALYSIS
- SAND EQUIVALENT
- SPECIFIC GRAVITY

*** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***
Geotechnical Boring Log RB-2

Project No. 11564.001
Project Carnival Cruise Substation
Drilling Co. SoCal Drilling CO.
Drilling Method Rotary Wash - 140lb - Autohammer - 30" Drop
Location See Plate 1 - Geotechnical Exploration Map
Date Drilled 2-9-17
Logged By JMP
Hole Diameter 4+3/4"
Ground Elevation ~20.4'
Sampled By JMP

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Long</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td>N</td>
<td>R6</td>
<td>4</td>
<td>7 12</td>
<td>ML</td>
<td>@60': Sandy SILT, gray, wet, medium dense, fine grained sand, micaceous, some fine shell fragments</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>S</td>
<td>S7</td>
<td>16</td>
<td>23 29</td>
<td>ML</td>
<td>Quaternary Alluvium</td>
<td>@65': Sandy SILT, yellow brown, very moist, hard, fine grained sand, micaceous (56.1% passing #200)</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>S</td>
<td>R7</td>
<td>32</td>
<td>67</td>
<td>SM</td>
<td>@70': Silty SAND, yellow brown, very moist, very dense, fine grained sand, micaceous</td>
<td></td>
</tr>
</tbody>
</table>

Total Depth of Boring: 71.5 feet bgs
Groundwater encountered at 14.0 feet during drilling; rose to 10.5 feet after 10 minutes.
Boring backfilled with bentonite-cement grout upon completion of drilling; capped with six-inches cold patch asphalt mix.

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- GRAPHIC
- PERCUSSIVE
- GRAVITY
- CAPILLARY
- DRAINAGE
- PENETRATION
- PENETROMETER
- SPECIFIC GRAVITY
- COMPRESSION
- UNCONFINED COMPRESSIVE STRENGTH

*** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

- **@Surface:** 5-inches Asphalt Concrete over 2-inches Aggregate Base
 - *Artificial Fill, undocumented (dredged fill)*

- **@5':** Silty SAND with gravel, olive brown, moist, loose to medium dense, fine to medium grained sand

- **@10':** Clayey SILT to Silty CLAY, gray, wet, very soft

- **@20':** SILT, gray, wet, soft

- **@26.5':** CLAY, gray, wet, soft, sample disturbed by sand catcher used for recovery
 - LL = 48
 - PI = 29
 - UU = 2 pst at 5% strain
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density, pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.C.S.)</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>S3</td>
<td>1 2</td>
<td></td>
<td></td>
<td>ML</td>
<td>@30': SILT to Clayey SILT, gray, wet, micaceous, soft</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>R5</td>
<td>4 5</td>
<td></td>
<td></td>
<td>CL</td>
<td>@35': SILT, gray, wet/saturated, soft, micaceous</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>S4</td>
<td>Push 1 2</td>
<td></td>
<td></td>
<td>SM</td>
<td>@40': CLAY, gray, wet/saturated, very soft, micaceous</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>R6</td>
<td>5 7 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>S5</td>
<td>4 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>R7</td>
<td>1 3 4 73 49</td>
<td></td>
<td></td>
<td>CL</td>
<td>@50': Loose (27.1% passing #200)</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AL, Tx</td>
</tr>
</tbody>
</table>

Mudline or Tidal Flat Deposits

- @55': CLAY to Sandy CLAY, gray to dark gray, very moist, soft, micaceous, organic odor in dark gray portion, fine grained sand
 - LL = 45
 - PI = 26
 - UU = 3 psi at 5% strain

Sample No.

- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:

- 200 % FINES PASSING
- ATTERBERG LIMITS
- CONSOLIDATION
- COLLAPSE
- UNDRAINED TRIAXIAL
- DIRECT SHEAR
- EXPANSION INDEX
- CONSOLIDATION
- COLUSSION
- UNECONFINED COMPRESSION STRENGTH
- HYDROMETER
- MAXIMUM DENSITY
- POCKET PENETROMETER
- ARISON
- R VVALUE

This log is a part of a report by Leighton and should not be used as a stand-alone document.
GEOTECHNICAL BORING LOG RB-3

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Densitypcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Soil Description</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td>S6</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>@60': CLAY to Silty CLAY, gray to dark gray, wet, stiff to medium stiff, few shell fragments</td>
<td>-200</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>R8</td>
<td>27</td>
<td>50/5'</td>
<td></td>
<td></td>
<td></td>
<td>Quaternary Alluvium</td>
<td>-200</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>S7</td>
<td>23</td>
<td>35</td>
<td>42</td>
<td></td>
<td></td>
<td>@ 70': same as above (21.1% passing #200)</td>
<td>-200</td>
</tr>
</tbody>
</table>

Total Depth of Boring: 71.5 feet bgs

Groundwater encountered at 14.4 feet during drilling; rose to 11.8 feet after 10 minutes.

Boring backfilled with bentonite-cement grout upon completion of drilling, capped with six-inches cold patch asphalt mix.

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

SAMPLE TYPES:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:
- PERCENTAGE OF FINE PASSING
- DIRECT SHEAR
- SIEVE ANALYSIS
- SAND EQUIVALENT
- CONSOLIDATION
- HYDROMETER
- SPECIFIC GRAVITY
- UNCONFINED COMPRESSION STRENGTH

* * * This log is a part of a report by Leighton and should not be used as a stand-alone document. * * *
A-3
“Existing Parking Structure Expansion Project,
Queen Mary Complex”
By Leighton Consulting, Inc.
(May, 2018)
Project Information

Project No. 12018.001
Project Carnival Cruise Parking Structure Expansion
Drilling Co. SoCal Drilling
Drilling Method Rotary Wash - Autohammer
Location See Plate 1, Exploration Location Map
Date Drilled 6-13-18
Logged By EMH
Hole Diameter 4"
Ground Elevation 15'
Sample Elevation 15'

Soil Description

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>SP</td>
</tr>
<tr>
<td>S-1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>SM</td>
</tr>
<tr>
<td>R-2</td>
<td>Push</td>
<td>Push</td>
<td>1</td>
<td>SP</td>
</tr>
<tr>
<td>S-2</td>
<td>Push</td>
<td>Push</td>
<td>Push</td>
<td>SM</td>
</tr>
<tr>
<td>R-3</td>
<td>Push</td>
<td>95.1</td>
<td>30.2</td>
<td>SM</td>
</tr>
</tbody>
</table>

- **@0'**: 5-inches of asphalt concrete over 12-inches base.
- **@1.5'**: Dredge fill.
- **@5'**: SAND, olive, medium dense, fine sand, low silt content, shells, poorly graded.
 - $SO_4 = 33$ ppm
 - $Cl = 40$ ppm
- **@10'**: Silty SAND, brown, loose, moist, fine sand.
- **@15'**: No Recovery
- **@20'**: SILT, dark grey, very soft, wet, some fine sand and clay.
- **@25'**: Silty SAND, olive grey, very soft, wet, fine sand, slightly micaceous, little clay, nonplastic.

Sample Types

- **BULK SAMPLE**
- **CORE SAMPLE**
- **GRAB SAMPLE**
- **RING SAMPLE**
- **SPLINT SPOON SAMPLE**
- **TUBE SAMPLE**

Type of Tests

- **DS** DIRECT SHEAR
- **EI** EXPANSION INDEX
- **H** HYDROMETER
- **MD** MAXIMUM DENSITY
- **PP** POCKET PENETROMETER
- **RV** R VALUE

This log is a part of a report by Leighton and should not be used as a stand-alone document.
GEOTECHNICAL BORING LOG LB-1

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Soil Class</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Densitypcf</th>
<th>Moisture Content %</th>
<th>Soil Class (U.S.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15</td>
<td>CL</td>
<td>S-3</td>
<td>Push 2</td>
<td>6</td>
<td>10</td>
<td>SM</td>
</tr>
<tr>
<td>-20</td>
<td>SM</td>
<td>R-4</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>SM-ML</td>
</tr>
<tr>
<td>-25</td>
<td>SM-ML</td>
<td>S-4</td>
<td>Push 2</td>
<td>2</td>
<td>2</td>
<td>SM-ML</td>
</tr>
<tr>
<td>-30</td>
<td>CH</td>
<td>R-5</td>
<td>Push 1</td>
<td>3</td>
<td>54</td>
<td>CH</td>
</tr>
<tr>
<td>-35</td>
<td></td>
<td>S-5</td>
<td>Push 1</td>
<td>1</td>
<td>76.7</td>
<td>AL</td>
</tr>
<tr>
<td>-40</td>
<td></td>
<td>R-6</td>
<td>Push 1</td>
<td>2</td>
<td>46.8</td>
<td>AL</td>
</tr>
</tbody>
</table>

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

@30': Silty CLAY with sand, dark grey, very soft, wet, fine sand.

@35': Silty SAND, greyish brown, medium dense, wet, fine sand, slightly micaceous.

@40': Silty SAND to sandy SILT, greyish brown, loose/ very soft, fine sand, little clay.

@45': Fat CLAY, very dark grey, soft, some silt and fine sand, medium to high plasticity.

@50': CLAY, grey, very soft, wet, some silt, medium to high plasticity, with black organic staining.

@55': CLAY, grey, very soft, wet, some silt, medium to high plasticity, with black organic staining.

Mudline or Tidal Flat Deposits

Hole Diameter

- 4"

Ground Elevation

- 15'

Type of Tests

- DIRECT SHEAR
- EXPANSION INDEX
- HYDROMETER
- MAXIMUM DENSITY
- UNCONFINED COMPRESSIVE STRENGTH

Sample Types

- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

This log is a part of a report by Leighton and should not be used as a stand-alone document.*
GEOTECHNICAL BORING LOG LB-1

Project No. 12018.001
Logged By EMH
Date Drilled 6-13-18
Project Carnival Cruise Parking Structure Expansion
Logged By EMH
Drilling Co. SoCal Drilling
Hole Diameter 4"
Drilling Method Rotary Wash - Autohammer
Ground Elevation 15'
Location See Plate 1, Exploration Location Map

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Sample Type</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Moisture Content, %</th>
<th>Soil Class (U.S.C.S.)</th>
<th>Soil Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-45-60</td>
<td>S-6</td>
<td></td>
<td>Push Push Push</td>
<td>CL</td>
<td>@60': Silty CLAY, dark grey, very soft, wet, little fine sand, medium plasticity.</td>
<td></td>
</tr>
<tr>
<td>-50-65</td>
<td>R-7</td>
<td></td>
<td>Push 1</td>
<td>81.7</td>
<td>ML</td>
<td>@65': Sandy SILT, dark olive grey, very soft, wet, fine sand, trace clay, odorous. LL = 33 PI = 7 PP = 1.0</td>
</tr>
<tr>
<td>-55-70</td>
<td>S-7</td>
<td>15</td>
<td>1</td>
<td>41.7</td>
<td>SM-ML</td>
<td>Quaternary Alluvium (Qa): @70': Sandy SILT to silty SAND, yellowish brown, medium dense, mostly fine sand, with some medium sand laminations.</td>
</tr>
<tr>
<td>-60-75</td>
<td>R-8</td>
<td>24</td>
<td>56/5"</td>
<td>SM</td>
<td>@75': Silty SAND, yellowish brown to orange brown, very dense, fine to medium sand, abundant shell fragments, low silt content.</td>
<td></td>
</tr>
<tr>
<td>-65-80</td>
<td>S-8</td>
<td>25</td>
<td>53/6"</td>
<td>SM</td>
<td>@80': Silty SAND, yellowish brown, very dense, fine sand, abundant micas.</td>
<td></td>
</tr>
<tr>
<td>-70-85</td>
<td>R-9</td>
<td>33</td>
<td>50/4"</td>
<td>SM</td>
<td>@85': Increase in silt content, grades finer.</td>
<td></td>
</tr>
<tr>
<td>-75-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types: BULK SAMPLE, CORE SAMPLE, GRAB SAMPLE, RING SAMPLE, SPLIT SPOON SAMPLE, TUBE SAMPLE.
Type of Tests: DIRECT SHEAR, EXPANSION INDEX, HYDROMETER, MAXIMUM DENSITY, UNCONFINED COMRESSIVE STRENGTH, SIEVE ANALYSIS, SAND EQUIVALENT, SPECIFIC GRAVITY, UNDRAINED TRIAXIAL, PENTETROMETER.

Notes:

- This Soil Description applies only to a location of the exploration at the time of sampling. Surface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Sample Methods:

- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

This log is a part of a report by Leighton and should not be used as a stand-alone document.*
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

- **@90': Sandy SILT, greyish brown, hard, fine sand, abundant micas, minor cementation.**
- **@95': SILT, olive brown, hard, little fine sand, micaceous, heavily oxidized, nonplastic.**
- **@100': SILT with clay, laminated orange brown to grey brown, slightly micaceous, some fine sand, oxidized laminations, low to medium plasticity.**
- **@105': SILT, grey, hard, little fine sand, nonplastic, partially cemented.**
- **@110': Same as above, with little clay, low plasticity.**
- **@115': Sandy SILT, olive grey, hard, fine sand, micaceous. (70.4% passing #200)**

 UU = 88 psi at 5% strain
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Total Depth: 121.5 feet bgs
Groundwater measured at 12 feet bgs after drilling.
Boring backfilled with cement bentonite grout, and asphalt cold-patched upon completion.

Sample Types:

- **BULK SAMPLE**
- **CORE SAMPLE**
- **GRAB SAMPLE**
- **RING SAMPLE**
- **SPLIT SPOON SAMPLE**
- **TUBE SAMPLE**

Type of Tests:

- **DIRECT SHEAR**
- **SIEVE ANALYSIS**
- **SAND EQUIVALENT**
- **CONSERATION LIMITS**
- **HYDROMETER**
- **SPECIFIC GRAVITY**
- **MAXIMUM DENSITY**
- **UNCONFINED COMpressive STRENGTH**
- **POCKET PENETROMETER**
- **UNDRAINED TRIAXIAL**
- **R VAlUE**

Note: This log is a part of a report by Leighton and should not be used as a stand-alone document. **
This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

- **@0'**: 5-inches asphalt concrete, then
 - Artificial Fill, undocumented (Afu), Dredge Fill:
 - \(\text{SO}_4 = 782 \text{ ppm} \)
 - \(\text{Cl} = 52 \text{ ppm} \)

- **@5'**: Sandy SILT, greyish brown, medium stiff, moist, fine sand, nonplastic.

- **@15'**: No recovery.

- **@25'**: SILT with clay, dark greyish brown, medium stiff, wet, micaceous, low to medium plasticity.
GEOTECHNICAL BORING LOG LB-2

Project Information
- **Project No.**: 12018.001
- **Project**: Carnival Cruise Parking Structure Expansion
- **Drilling Co.**: SoCal Drilling
- **Drilling Method**: Rotary Wash - Autohammer
- **Location**: See Plate 1, Exploration Location Map
- **Date Drilled**: 6-21-18
- **Logged By**: EMH/KMD
- **Hole Diameter**: 4"
- **Ground Elevation**: 15'
- **Sampled By**: EMH/KMD

Soil Description

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Sample No.</th>
<th>Blows Per Inches</th>
<th>Dry Density pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@35':</td>
<td>R-2</td>
<td>75.3</td>
<td>45.4</td>
<td>@35': SILT with clay, greyish brown, soft, wet, low plasticity, trace fine sand.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>PL = 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>PI = 19</td>
<td></td>
</tr>
<tr>
<td>@45':</td>
<td>S-3</td>
<td>75.4</td>
<td>48.3</td>
<td>@45': Sandy SILT with clay, greyish brown, soft, wet, fine sand, nonplastic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@50':</td>
<td>R-3</td>
<td>35</td>
<td>55</td>
<td>@50': Silty SAND, grey, medium dense, wet, mostly fine sand, micaceous, disturbed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@55':</td>
<td>S-4</td>
<td>48.3</td>
<td>ML</td>
<td>@55': Sandy SILT with clay, very dark grey to black, soft, wet, fine sand, low plasticity, organic staining.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Push</td>
<td>Push</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of Tests

- **Graphical**: pocket penetrometer, vane shear, undrained triaxial
- **Laboratory**: sieve analysis, specific gravity, unconfined compressive strength

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- DIRECT SHEAR
- EXPANSION INDEX
- HYDROMETER
- MAXIMUM DENSITY
- POCKET PENETROMETER
- UNCONFINED COMPRESSION

This log is a part of a report by Leighton and should not be used as a stand-alone document.
GEOTECHNICAL BORING LOG LB-2

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Log</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>-45</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>29</td>
<td>32</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>-50</td>
<td>65</td>
<td></td>
<td></td>
<td>R-4</td>
<td>16</td>
<td>27</td>
<td>50/3"</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>-55</td>
<td>70</td>
<td></td>
<td></td>
<td>S-5</td>
<td>16</td>
<td>27</td>
<td></td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td>75</td>
<td></td>
<td></td>
<td>R-5</td>
<td>25</td>
<td>50/3"</td>
<td></td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>-65</td>
<td>80</td>
<td></td>
<td></td>
<td>S-6</td>
<td>14</td>
<td>21</td>
<td>25</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>-70</td>
<td>85</td>
<td></td>
<td></td>
<td>R-6</td>
<td>38</td>
<td>50/3"</td>
<td></td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>-75</td>
<td>90</td>
<td></td>
<td></td>
<td>S-7</td>
<td>19</td>
<td>24</td>
<td>28</td>
<td>SM</td>
<td></td>
</tr>
</tbody>
</table>

Quaternary Alluvium (Qa):

@60': Silty SAND, grey, dense, wet, fine to medium sand, abundant shell fragments, slightly micaceous.

@65': Silty SAND, yellowish brown, dense, wet, normally graded, grades to fine silty SAND with thin lamination of silty CLAY.

@70': Silty SAND, yellowish brown, dense, moist, mostly fine sand, slightly micaceous.

@75': SAND with silt, yellowish brown, dense, moist, mostly fine sand, trace coarse sand, slightly micaceous.

@80': Grades finer.

@85': Silty SAND, yellowish brown, very dense, moist, very fine sand, faintly laminated, slightly micaceous.

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

SAMPLE TYPES:

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BULK SAMPLE</td>
<td>100% FINE PASSING</td>
</tr>
<tr>
<td>CORE SAMPLE</td>
<td>ATTERBERG LIMITS</td>
</tr>
<tr>
<td>GRAB SAMPLE</td>
<td>CONSOLIDATION</td>
</tr>
<tr>
<td>RING SAMPLE</td>
<td>COLLAPSE</td>
</tr>
<tr>
<td>TUBE SAMPLE</td>
<td>UNDRAINED TRIAXIAL</td>
</tr>
</tbody>
</table>

TYPE OF TESTS:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>DIRECT SHEAR</td>
</tr>
<tr>
<td>EI</td>
<td>EXPANSION INDEX</td>
</tr>
<tr>
<td>H</td>
<td>HYDROMETER</td>
</tr>
<tr>
<td>MD</td>
<td>MAXIMUM DENSITY</td>
</tr>
<tr>
<td>PP</td>
<td>POCKET PENETROMETER</td>
</tr>
<tr>
<td>RV</td>
<td>R VALUE</td>
</tr>
</tbody>
</table>

*** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Log</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Densitypcf</th>
<th>Moisture Content, %</th>
<th>Soil Class (U.S.C.S.)</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>-75</td>
<td>90</td>
<td>R-7</td>
<td>S</td>
<td>ML</td>
<td>26 55/6"</td>
<td></td>
<td></td>
<td></td>
<td>DS</td>
</tr>
<tr>
<td>@90°: Sandy SILT, mottled olive brown to orangeish brown, hard, moist, very fine sand, trace clay, oxidation staining, slightly micaceous, grades sandier, nonplastic (62.6% passing #200).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-95</td>
<td>14</td>
<td>S-8</td>
<td>S</td>
<td>ML</td>
<td>14 35</td>
<td></td>
<td></td>
<td></td>
<td>SA, AL, UC</td>
</tr>
<tr>
<td>@95°: Sandy SILT, yellowish brown to greyish brown, moist, fine sand, gleyed laminations, nonplastic.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-100</td>
<td>11</td>
<td>R-8</td>
<td>S</td>
<td>ML</td>
<td>11 27 38</td>
<td></td>
<td></td>
<td></td>
<td>UC</td>
</tr>
<tr>
<td>@100°: SILT with clay, mottled olive grey to orangeish brown, hard, moist, slightly cemented, low plasticity, slightly micaceous, oxidation blebs and stains, ~2-inch CaCO₃ stringer at the base of the sample.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-105</td>
<td>8</td>
<td>S-9</td>
<td>S</td>
<td>ML</td>
<td>8 12 14</td>
<td></td>
<td></td>
<td></td>
<td>UC</td>
</tr>
<tr>
<td>@105°: SILT, olive brown to greyish brown, with orange oxidation staining, moist, very stiff, trace clay and fine sand, low plasticity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-110</td>
<td>14</td>
<td>R-9</td>
<td>S</td>
<td>ML</td>
<td>14 23 26</td>
<td></td>
<td></td>
<td></td>
<td>UC</td>
</tr>
<tr>
<td>@110°: SILT, grey, hard, moist, slightly cemented, little clay and fine sand, low plasticity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-115</td>
<td>8</td>
<td>S-10</td>
<td>S</td>
<td>ML</td>
<td>8 10 12</td>
<td></td>
<td></td>
<td></td>
<td>UC</td>
</tr>
<tr>
<td>@115°: SILT with clay, grey, very stiff, moist, trace fine sand, low plasticity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE
- TYPE OF TESTS:
 - DS DIRECT SHEAR
 - SA SIEVE ANALYSIS
 - UC UNCONFINED COMPRESSIVE STRENGTH
 - ML MOISTURE LEVEL
 - BB BREAK DOWN
 - NS NUMERICAL SIMULATION
 - EMH/KMD

This log is a part of a report by Leighton and should not be used as a stand-alone document.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Total Depth: 121.5 feet bgs
Groundwater measured at 12 feet bgs after drilling. Boring backfilled with cement bentonite grout, and asphalt cold-patched upon completion.

Type of Tests:
- UC
- @120°: SILT, dark grey, hard, moist, some fine sand, nonplastic.
Subject: CPT Site Investigation
Carnival Cruise Parking Garage
Long Beach, California
GREGG Project Number: D1180558SH

Dear Mr. Ip:

The following report presents the results of GREGG Drilling & Testing’s Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

<table>
<thead>
<tr>
<th></th>
<th>Cone Penetration Tests</th>
<th>(CPTU)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pore Pressure Dissipation Tests</td>
<td>(PPD)</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Seismic Cone Penetration Tests</td>
<td>(SCPTU)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>UVOST Laser Induced Fluorescence</td>
<td>(UVOST)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Groundwater Sampling</td>
<td>(GWS)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Soil Sampling</td>
<td>(SS)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vapor Sampling</td>
<td>(VS)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pressuremeter Testing</td>
<td>(PMT)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Vane Shear Testing</td>
<td>(VST)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dilatometer Testing</td>
<td>(DMT)</td>
<td></td>
</tr>
</tbody>
</table>

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (562) 427-6899.

Sincerely,

GREGG Drilling & Testing, Inc.

Frank Stolfi
HRSC Division Manager, Gregg Drilling & Testing, Inc.
Cone Penetration Test Sounding Summary

-Table 1-

<table>
<thead>
<tr>
<th>CPT Sounding Identification</th>
<th>Date</th>
<th>Termination Depth (feet)</th>
<th>Depth of Groundwater Samples (feet)</th>
<th>Depth of Soil Samples (feet)</th>
<th>Depth of Pore Pressure Dissipation Tests (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT-1</td>
<td>5/18/2018</td>
<td>47.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPT-2</td>
<td>5/18/2018</td>
<td>70.05</td>
<td>-</td>
<td>-</td>
<td>68.0</td>
</tr>
<tr>
<td>CPT-3</td>
<td>5/18/2018</td>
<td>70.37</td>
<td>-</td>
<td>-</td>
<td>46.0</td>
</tr>
<tr>
<td>CPT-4</td>
<td>5/18/2018</td>
<td>66.76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Total depth: 70.05 ft, Date: 5/18/2018

CARNIVAL CRUISE PARKING GARAGE - LONG BEACH, CA

CLIENT: LEIGHTON CONSULTING

SITE: CARNIVAL CRUISE PARKING GARAGE - LONG BEACH, CA

Field Rep: BRIAN

CPT: CPT-2

WATER TABLE FOR ESTIMATING PURPOSES ONLY

Cone resistance

Sleeve friction

Pore pressure u

Friction ratio

Soil Behaviour Type

SBTn legend
1. Sensitive fine grained
2. Organic material
3. Clay to silty clay
4. Clayey silt to silty clay
5. Silty sand to sandy silt
6. Clean sand to silty sand
7. Gravely sand to sand
8. Very stiff sand to clayey sand
9. Very stiff fine grained

CPT data presentation & interpretation software - Report created on: 5/31/2018, 5:57:56 PM
Project file: C:\CDP\180558SH\Report\180558.cpt
CLIENT: LEIGHTON CONSULTING
SITE: CARNIVAL CRUISE PARKING GARAGE - LONG BEACH, CA

CARNIVAL CRUISE PARKING GARAGE - LONG BEACH, CA

Total depth: 66.76 ft, Date: 5/18/2018

CPT: CPT-4

Field Rep: BRIAN

1. Sensitive fine grained
2. Organic material
3. Clay to silty clay
4. Clayey silt to silty clay
5. Silty sand to sandy silt
6. Clean sand to silty sand
7. Gravely sand to sand
8. Very stiff sand to clayey sand
9. Very stiff fine grained

Cone resistance

Sleeve friction

Friction ratio

SPT N60

Soil Behaviour Type

SBTn legend

1. Sensitive fine grained
2. Organic material
3. Clay to silty clay
4. Clayey silt to silty clay
5. Silty sand to sandy silt
6. Clean sand to silty sand
7. Gravely sand to sand
8. Very stiff sand to clayey sand
9. Very stiff fine grained
CLIENT: LEIGHTON CONSULTING
SITE: CARNIVAL CRUISE PARKING GARAGE - LONG BEACH, CA

Total depth: 66.76 ft, Date: 5/18/2018

WATER TABLE FOR ESTIMATING PURPOSES ONLY

CPT: CPT-4

Field Rep: BRIAN

TOTAL DEPTH: 66.76 FT

CONE RESISTANCE

SLEEVE FRICTION

PORE PRESSURE u

FRICTION RATIO

SOIL BEHAVIOUR TYPE

1. Sensitive fine grained
2. Organic material
3. Clay to silty clay
4. Clayey silt to silty clay
5. Silty sand to sandy silt
6. Clean sand to silty sand
7. Gravely sand to sand
8. Very stiff sand to clayey sand
9. Very stiff fine grained

SBTn legend

CPT-IT v.18.0.1.15 - CPTU data presentation & interpretation software - Report created on: 5/31/2018, 5:57:56 PM
Project file: C:\CDP\180558SH\Report\180558.cpt
GEOTECHNICAL BORING LOG B-1

Project No. 12096.001
Project Atkins Carnival Cruise
Drilling Co. Gregg Drilling
Drilling Method Mobile B80 Marine Platform - 140lb - Autohammer
Location Northing: 1731342.00, Easting: 6504679.38

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Graphic Long</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per Inches</th>
<th>Dry Density,pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>T-1</td>
<td>PUSH</td>
<td></td>
<td>OL (SILT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td></td>
<td></td>
<td>R-1</td>
<td>PUSH</td>
<td></td>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-35</td>
<td></td>
<td></td>
<td>S-1</td>
<td>PUSH</td>
<td>60</td>
<td></td>
<td></td>
<td>M, AL, H</td>
</tr>
<tr>
<td>-40</td>
<td></td>
<td></td>
<td>R-2</td>
<td>PUSH</td>
<td>71.5</td>
<td>ML</td>
<td></td>
<td>M, DS, H</td>
</tr>
<tr>
<td>-45</td>
<td></td>
<td></td>
<td>S-2</td>
<td>PUSH 3</td>
<td>33</td>
<td>SM</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>-50</td>
<td></td>
<td></td>
<td>R-3</td>
<td>PUSH 20</td>
<td></td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-55</td>
<td></td>
<td></td>
<td>S-3</td>
<td>18 20 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tidal Deposits:

- @2’: SILT, dark grey, soft, wet, micaceous, nonplastic.
- @3.5’: SILT, dark grey, soft, wet, micaceous, nonplastic.
- @7’: CLAY with silt, gray, wet.
- @8’: Clayey SILT, very dark brown, soft, very moist to wet, moderate plasticity, some organic matter, odorous.
- @12’: SILT, dark grey, soft, moist.
- @13.5’: Clayey SILT, dark grey to black, soft, very moist to wet, very plastic, organic odor, indistinct laminations, locally micaceous.
- @17’: Sandy SILT, gray, soft, moist, fine sand.
- @18’: Silty SAND, dark grey, loose, wet, fine sand, scattered shell fragments, locally micaceous.
- @28’: SAND, light yellow brown, dense, moist, fine sand, local FeO stained partings, local FeO stained fossil fragments.

Alluvium:

@23’: SAND with silt, trace clay, mottled brown and olive grey, loose, wet, fine sand, micaceous, local FeO staining, scattered shell fragments.

Sample Types:

- Bulk Sample
- Core Sample
- Grab Sample
- Ring Sample
- Split Spoon Sample
- Tube Sample

Typical Tests:

- 200 % Finers Passing
- Direct Shear
- Expansion Index
- Consolidation
- Collapse
- Maximum Density
- Undrained Triaxial
- Pocket Penetrometer
- Sieve Analysis
- Sand Equivalent
- Specific Gravity
- Unconfined Compressive Strength

This log is a part of a report by Leighton and should not be used as a stand-alone document.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

@32.5-32.83': SAND, yellow-brown, very dense, moist, fine to medium grained sand, local layers of shell fragments.

@38': SAND, yellow-brown, very dense, moist, micaceous, local FeO stained laminae, minor shell fragments.

@42': Clay, dark grey.

@43.5': SAND with silt, light brown, very dense, moist, fine to medium grained sand, micaceous, interbeds and laminae of dark grey shell mash, with local FeO stains, quartzitic.

@48.5': SILT with sand, light yellow brown, dense, slightly moist to moist, poorly sorted, thinly horizontally laminated, FeO staining along laminae, with partings where broken, sugary texture.

@52': SILT, medium yellow brown, hard, moist, medium plastic, micaceous.

@58.5': SILT with clay, light yellow-brown, very stiff, moist, low plasticity, micaceous, locally FeO stained.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Sample No. 62:
- **CLAY** with silt, yellow-brown with grey mottling, moderate to high plasticity, minor shell fragments.

Sample No. 63.5:
- **SILT** with clay, yellow-brown to dark green-grey, hard, moist, slightly plastic, micaceous, minor woody fragments.

Sample No. 67:
- **SILT**, minor sand, dark grey, very stiff, moist, fine sand, thinly laminated, scattered shells and shell fragments in layers.

Sample No. 72:
- **SILT**, medium to dark grey, stiff, moist, micaceous, local shell fragments.

Sample No. 83:
- **SAND**, grey, very dense, moist, fine to medium grained, quartzitic, minor shell fragments, local 1-inch shell hash bed.

Sample Types:
- **BULK SAMPLE**
- **CORE SAMPLE**
- **GRAB SAMPLE**
- **RING SAMPLE**
- **SPLIT SPOON SAMPLE**
- **TUBE SAMPLE**

Type of Tests:
- **DS** DIRECT SHEAR
- **SA** SIEVE ANALYSIS
- **SE** SAND EQUIVALENT
- **SG** SPECIFIC GRAVITY
- **UC** UNCONFINED COMPR. STRENGTH
- **PP** POCKET PENETROMETER
- **RV** R VALUE
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

@92’: SAND with clay, dark grey, very dense, wet, fine sand, local shell mash deposits (±2 inches thick), local woody fragments, local interbeds of soft plastic clayey SILT to silty CLAY.

@102.5’: SAND, medium grey, very dense, moist to wet, fine to medium grained, shell hash bed.

@112’: SILT, grey, moist.

@112.5’: ~3-inch thick shell mash.

@113.5’: SILT with clay, grey, hard, moist, locally micaceous SAND interbeds.
GEOTECHNICAL BORING LOG B-1

Project No. 12096.001
Date Drilled 7-24-18
Logged By J LH
Hole Diameter 4.5"
Location Northing: 1731342.00, Easting: 6504679.38
Sampled By JP

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

- @123': 1-inch CLAY underlies 2-inch thick shell mash lens.
- @123.5': SAND with silt, dark grey, dense, wet, fine to medium grained sand, scattered shells.

Total Depth: 123.5 feet bgs
Boring backfilled with cement grout upon completion of drilling.

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Long</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Densitypcf</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Type of Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>-150</td>
<td>S-10</td>
<td>FR</td>
<td>22</td>
<td>43, 504</td>
<td></td>
<td></td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>-155</td>
<td></td>
<td>FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- Bulk Sample
- Core Sample
- Grab Sample
- Ring Sample
- Split Spoon Sample
- Tube Sample

Type of Tests:
- Direct Shear
- Expansion Index
- Hydrometer
- Maximum Density
- Pocket Penetrometer
- Undrained Triaxial
- Unconfined Compressive Strength
- Unconfined Strength

This log is a part of a report by Leighton and should not be used as a stand-alone document.
Tidal Deposits:
- @0': SILT, black, very soft, wet, organic odor.
- @2': No recovery.
- @5': No recovery.
- @8': CLAY, olive gray, soft, moist.
- @9': SILT, with clay, grey-brown, very soft, wet, medium plasticity.

Alluvium:
- @18': Silty SAND, blue-grey, loose, wet, fine sand, scattered shell fragments, noncohesive.
- @23.5': Silty SAND, grey-brown, very dense, moist, fine to medium grained sand.
- @27': 3-inch shell mash bed.
- @28.5': SAND, light gray to pale brown, very dense, moist, fine to medium grained sand, local shell fragments.

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Attitudes</th>
<th>Blows Per 6 Inches</th>
<th>Moisture Content, %</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>@32': SAND, dark grey to grey, medium dense, moist, medium grained, blebs of black clay rip-up clasts.</td>
<td>@33.25': SAND, medium yellow, dense, moist, fine to medium grained, quartzitic.</td>
<td>7</td>
<td>19</td>
<td>45</td>
<td>-32'</td>
</tr>
<tr>
<td>@36.75': Shell hash (storm deposit).</td>
<td></td>
<td>18</td>
<td>35</td>
<td></td>
<td>-37.5'</td>
</tr>
<tr>
<td>@37.5': SAND, light blue-grey, dense, moist, fine grained.</td>
<td></td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>-42'</td>
</tr>
<tr>
<td>@42': CLAY with silt, medium to light brown and mottled grey, moist, plastic.</td>
<td></td>
<td>12.5</td>
<td>12.75</td>
<td></td>
<td>-52'</td>
</tr>
<tr>
<td>@43': Silty SAND, light brown to grey, dense, fine sand, scattered shells.</td>
<td></td>
<td>11</td>
<td>18</td>
<td>25</td>
<td>-57'</td>
</tr>
<tr>
<td>@47.5': SAND, with clay, brown, very dense, moist, medium grained sand, angular grains.</td>
<td></td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>-65'</td>
</tr>
<tr>
<td>@52': CLAY, with silt, light olive brown, very stiff, moist, medium plasticity.</td>
<td></td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>-70'</td>
</tr>
<tr>
<td>@57': SAND, trace gravel, pale brown, loose, wet, coarse sand, fine gravel, with shell fragments.</td>
<td></td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>-75'</td>
</tr>
<tr>
<td>@58.25': CLAY, with silt, yellow-brown with grey motting, very stiff, plastic.</td>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>-80'</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:
- 200 % FINES PASSING
- ATTERBERG LIMITS
- CONSOLIDATION
- CORROSION
- UNDRAINED TRIAXIAL
- DIRECT SHEAR
- EXPANSION INDEX
- CONSOLIDATION
- HYDROMETER
- COLLAPSE
- MAXIMUM DENSITY
- POCKET PENETROMETER
- SIEVE ANALYSIS
- SAND EQUIVALENT
- SPECIFIC GRAVITY
- UNCONFINED COMPRESSION STRENGTH
- R VALUE

*** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Depth Feet</th>
<th>Type of Tests</th>
<th>Graphic Log</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density (pcf)</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-6B</td>
<td>60</td>
<td></td>
<td>N</td>
<td>S</td>
<td>R-6A</td>
<td>8</td>
<td>102.7</td>
<td>24</td>
<td>ML</td>
<td>@62': SILT, with clay, light blue-grey, moist, slightly micaceous.</td>
</tr>
<tr>
<td>S-6</td>
<td>-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>38</td>
<td></td>
<td>SP</td>
<td>@63': Silty SAND, grey-brown, dense, moist, find sand.</td>
</tr>
<tr>
<td>R-7</td>
<td>-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>34</td>
<td></td>
<td>SP</td>
<td>@67': SAND, trace gravel, light brown, dense, wet, medium to coarse grained sand, fine gravel.</td>
</tr>
<tr>
<td>S-7</td>
<td>-110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>40</td>
<td></td>
<td>CL</td>
<td>@73.5': SAND, green-grey, very dense, wet, fine sand, slightly micaceous and quartzitic, with small shell fragments.</td>
</tr>
<tr>
<td></td>
<td>-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
<td>@82.5': Silty CLAY, dark green-grey to black, moist, low to high plasticity, with blue bentonite bed.</td>
</tr>
<tr>
<td></td>
<td>-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
<td>@83.25': SAND, blue-brown and white-grey, very dense, moist, fine to medium grained sand, local grey CLAY rip-up clasts.</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:
- -200 % FINES PASSING
- ATTERBERG LIMITS
- CONSOLIDATION
- COLLAPSE
- CORROSION
- UNDRAINED TRIAXIAL

- DS: DIRECT SHEAR
- EI: EXPANSION INDEX
- H: HYDROMETER
- MD: MAXIMUM DENSITY
- PP: POCKET PENETROMETER
- RV: R VALUE

- SA: SIEVE ANALYSIS
- SE: SAND EQUIVALENT
- SG: SPECIFIC GRAVITY
- UC: UNCONFINED COMPRRESSIVE STRENGTH

*** This log is a part of a report by Leighton and should not be used as a stand-alone document. ***
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Elevation (Feet)</th>
<th>Depth</th>
<th>Graphic</th>
<th>Soil Class</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density</th>
<th>Moisture Content</th>
<th>@92'</th>
<th>@102'</th>
<th>@103'</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>SM</td>
<td>R-8</td>
<td>45</td>
<td>50/1"</td>
<td></td>
<td></td>
<td>Silty SAND, green-grey, very dense, moist, fine sand, quartz grains, moderately cohesive.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>CL</td>
<td>S-8</td>
<td>7</td>
<td>33</td>
<td></td>
<td></td>
<td>CLAY, blue-grey, moist, plastic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>SP</td>
<td>R-9</td>
<td>17</td>
<td>29</td>
<td></td>
<td></td>
<td>SAND, blue-grey, very dense, moist, fine sand, quartzitic, micaceous, with local shell fragments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>@112': SAND, with silt, blue-grey, very dense, wet, fine sand, noncohesive, slightly micaceous.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- 200 ALC
- NCC
- OCR
- CU
- ATTERBERG LIMITS
- E1
- EXPANSION INDEX
- H
- HYDROMETER
- MD
- MAXIMUM DENSITY
- PP
- POCKET PENETROMETER
- CR
- CORROSION
- RV
- UNDRAINED TRIAXIAL
- SA
- SIEVE ANALYSIS
- SE
- SAND EQUIVALENT
- SG
- SPECIFIC GRAVITY
- UC
- UNCONFINED COMPRRESSIVE STRENGTH
- RV
- R VALUE
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Sampled By: NA

Boring backfilled with cement grout upon completion of drilling.

TABLE 1:

<table>
<thead>
<tr>
<th>Elevation Feet</th>
<th>Depth Feet</th>
<th>Graphic Long</th>
<th>Attitudes</th>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Dry Density pcf</th>
<th>Moisture Content, %</th>
<th>Soil Class: (U.S.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>120</td>
<td>S-9</td>
<td>20</td>
<td>36</td>
<td>505°</td>
<td>SM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-155: Silty SAND, green-grey to black, very dense, wet, fine sand, micaceous, 1-inch of blue grey silty CLAY.

Total Depth: 124.5 feet bgs

TABLE 2:

- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:

- DIRECT SHEAR
- SAND EQUIVALENT
- CONSOLIDATION
- COLLAPSE
- CORROSION
- UNDRAINED TRIAXIAL

This log is a part of a report by Leighton and should not be used as a stand-alone document.*
SOIL DESCRIPTION

This soil description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Elevation (Feet)</th>
<th>Soil Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OL (SILT)</td>
<td>Artificial Fill, (Dredge Fill), undocumented (Afu): @0': SILT, black, very soft, wet, organic. (minor recovery)</td>
</tr>
<tr>
<td>5</td>
<td>Silt</td>
<td>@5': SILT, black, very soft, wet, organic.</td>
</tr>
<tr>
<td>7</td>
<td>CLAY</td>
<td>@7': SILT, black, wet, very soft, strong H2S odor.</td>
</tr>
<tr>
<td>7.5</td>
<td>Clay</td>
<td>@7.5': CLAY, with silt, black, very soft, wet, scant shells, structureless, strong H2S odor.</td>
</tr>
<tr>
<td>12</td>
<td>No recovery</td>
<td>No recovery.</td>
</tr>
<tr>
<td>15</td>
<td>No recovery</td>
<td>No recovery.</td>
</tr>
<tr>
<td>18.5</td>
<td>Clayey Silt</td>
<td>@18.5': Clayey Silt, black to dark olive grey, very soft, wet to very moist, moderate plasticity, indistinct laminae, local shell fragments, local grey SAND blebs.</td>
</tr>
<tr>
<td>20</td>
<td>Refusal</td>
<td>@20': Refusal. Total Depth: 20.15 feet bgs Driller refusal at 20 feet bgs, presumably on existing revetment. Relocating rig 110 feet North East of B-3-1.</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:
- DS DIRECT SHEAR
- EA EXPANSION INDEX
- AL ATTERBERG LIMITS
- CI CONSOLIDATION
- CR CORROSION
- CU UNDRAINED TRIAXIAL
- CO COLLAPSE
- PP POCKET PENETROMETER
- CL CLAY
- MD MAXIMUM DENSITY
- RV R VALUE
- NC NUCLEAR COMPACTED
- SD SAND DENSITY
- CS CAPILLARY SORPTION
- CN CONDUCTIVITY
- SG SPECIFIC GRAVITY
- B E-BENTHIC
- M SURFACE MIXTURE
- D DURABILITY
- U UNCONSOLIDATED
- T TURBIDITY

This log is a part of a report by Leighton and should not be used as a stand-alone document.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

Sample Types:

- **BULK SAMPLE**
- **CORE SAMPLE**
- **GRAB SAMPLE**
- **RING SAMPLE**
- **SPLIT SPOON SAMPLE**
- **TUBE SAMPLE**

Type of Tests:

- **DIRECT SHEAR**
- **EXPANSION INDEX**
- **CONSOLIDATION**
- **HYDROMETER**
- **SAND EQUIVALENT**
- **SPECIFIC GRAVITY**
- **UNECONFINED COMRESSIVE STRENGTH**

Table of Soil Descriptions:

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Soil Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OL (SILT)</td>
</tr>
<tr>
<td>-10</td>
<td>SP</td>
</tr>
<tr>
<td>-15</td>
<td>CL</td>
</tr>
<tr>
<td>-20</td>
<td>SP</td>
</tr>
<tr>
<td>-25</td>
<td>CL</td>
</tr>
<tr>
<td>-30</td>
<td>R-1</td>
</tr>
<tr>
<td>-35</td>
<td>R-2</td>
</tr>
<tr>
<td>-40</td>
<td>S-1</td>
</tr>
<tr>
<td>-45</td>
<td>S-2</td>
</tr>
</tbody>
</table>

Sample Log:

- **Sample No.**
- **Sampled By**
- **Logged By**
- **Date Drilled**
- **Hole Diameter**
- **Ground Elevation**

Additional Information:

- **Mobile B80 Marine Platform - 140lb - Autohammer**
- **7-26-18**
- **JLH**
- **-32'**
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

SOILS DISCUSSED

- **Grey and black laminae, slightly plastic to plastic.**
- **Sandy SILT, medium to dark grey, loose, wet, fine sand, minor shell fragments.**
- **Silt, dark gray, soft, very moist, cohesive, slight petroliferous odor, plastic.**
- **SAND, medium grey, loose to medium dense, moist, fine to medium grained sand, steel wool fragment.**
- **SAND, yellow-brown, medium dense, wet, fine sand, micaceous, quartzitic.**
- **1-inch thick shell hash layer.**

SAMPLE TYPES:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

TYPE OF TESTS:
- DS - DIRECT SHEAR
- EI - EXPANSION INDEX
- H - HYDROMETER
- MD - MAXIMUM DENSITY
- PP - POCKET PENETROMETER
- RV - R VALUE

This log is a part of a report by Leighton and should not be used as a stand-alone document.*

SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Blows Per 6 Inches</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-5</td>
<td>1 3 9</td>
<td>ML</td>
<td>@61.67' : SILT, brown, stiff, moist, plastic.</td>
</tr>
<tr>
<td>R-5</td>
<td>16 38 50/2"</td>
<td>SP</td>
<td>@65' : Clayey SILT, medium grey-yellow, moist, plastic.</td>
</tr>
<tr>
<td>S-6</td>
<td>5 7 22</td>
<td>SP</td>
<td>@66' : SAND, medium yellow-brown, very dense, moist to wet, fine to medium grained sand.</td>
</tr>
<tr>
<td>R-6</td>
<td>35 50/4"</td>
<td>SP</td>
<td>@70' : SAND, black to grey, moist, local 3-inch thick shell bed, scattered shell fragments, clast of yellow clay.</td>
</tr>
<tr>
<td>S-7</td>
<td>10 20 24</td>
<td>ML</td>
<td>@70.5' : SAND, medium yellow grey, medium dense, wet, medium grained sand.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>@75' : SAND, green-grey, very dense, wet, fine sand, micaceous.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>@85.5' : Clayey SILT, medium blue grey, hard, slightly plastic.</td>
</tr>
</tbody>
</table>

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- DIRECT SHEAR
- EXPANSION INDEX
- CONSOLIDATION
- HYDROMETER
- COLLAPSE
- MAXIMUM DENSITY
- POCKET PENETROMETER
- UNDRAINED TRIAXIAL
- UNCONFINED COMPRESSIVE STRENGTH
- SIEVE ANALYSIS
- SAND EQUIVALENT
- SPECIFIC GRAVITY

Sample By:
- Mobile B80 Marine Platform - 140lb - Autohammer

Logged By:
- J LH

Date Drilled:
- 7-26-18

Sampled By:
- KD

This log is a part of a report by Leighton and should not be used as a stand-alone document.
SOIL DESCRIPTION

This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Blows Per 6 Inches</th>
<th>Moisture Content, %</th>
<th>Soil Class, (U.S.C.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@95': Silty SAND, medium dark blue-grey, very dense, moist, fine sand, local shell fragments along indistinct laminae, micaceous, very low plasticity.</td>
<td>16</td>
<td>99.5</td>
<td>SM</td>
</tr>
<tr>
<td>@105.5': SAND, medium blue-grey, medium dense, wet, medium grained sand, angular grains, quartzitic.</td>
<td>17</td>
<td>35</td>
<td>SP</td>
</tr>
<tr>
<td>@115': No recovery. Total Depth 115.83 feet bgs Boring backfilled with cement grout upon completion of drilling.</td>
<td>19</td>
<td>39</td>
<td>50/4</td>
</tr>
</tbody>
</table>

Sample Types:
- BULK SAMPLE
- CORE SAMPLE
- GRAB SAMPLE
- RING SAMPLE
- SPLIT SPOON SAMPLE
- TUBE SAMPLE

Type of Tests:
- DS DIRECT SHEAR
- EI EXPANSION INDEX
- H HYDROMETER
- MD MAXIMUM DENSITY
- PP POCKET PENETROMETER
- RV R VALUE
- SA SIEVE ANALYSIS
- SE SAND EQUIVALENT
- SG SPECIFIC GRAVITY
- UC UNCONFINED COMPRESSIVE STRENGTH
APPENDIX B

Geotechnical Laboratory Test Results
ATTERBERG LIMITS
ASTM D 4318

Project Name: Carnival Cruise Substation Tested By: S. Felter Date: 02/22/17
Project No.: 11564.001 Input By: J. Ward Date: 03/02/17
Boring No.: RB-2 Checked By: J. Ward
Sample No.: R-1 Depth (ft.) 10.0
Soil Identification: Olive gray lean clay (CL)

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO.</td>
<td>1</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>23.59</td>
<td>23.65</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>21.82</td>
<td>21.80</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>13.58</td>
<td>13.49</td>
</tr>
</tbody>
</table>

Liquid Limit | 49
Plastic Limit | 22
Plasticity Index | 27
Classification | CL

PI at “A” Line = 0.73(LL-20) 21.17
One - Point Liquid Limit Calculation
LL = Wn(N/25)

PROcedures Used
- Wet Preparation
 Multipoint - Wet
- Dry Preparation
 Multipoint - Dry
- Procedure A
 Multipoint Test
- Procedure B
 One-point Test
Project Name: Carnival Cruise Substation
Tested By: S. Felter
Date: 02/24/17

Project No.: 11564.001
Input By: J. Ward
Date: 03/02/17

Boring No.: RB-3
Checked By: J. Ward

Sample No.: R-7
Depth (ft.): 55.0

Soil Identification: Dark grayish olive sandy lean clay s(CL)

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>21.73</td>
<td>21.56</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>20.11</td>
<td>19.93</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.64</td>
<td>11.51</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>19.13</td>
<td>19.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>21.73</td>
<td>21.56</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>20.11</td>
<td>19.93</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.64</td>
<td>11.51</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>19.13</td>
<td>19.36</td>
</tr>
</tbody>
</table>

Liquid Limit: **45**
Plastic Limit: **19**
Plasticity Index: **26**
Classification: **CL**

One Point Liquid Limit Calculation

\[
LL = Wn(N/25)
\]

\[
Plasticity Index (PI) = 0.121 LL
\]

\[
PI at "A" - Line = 0.73(LL-20)
\]

PROCEDURES USED

- Wet Preparation
 Multipoint - Wet
- Dry Preparation
 Multipoint - Dry
- Procedure A
 Multipoint Test
- Procedure B
 One-point Test
ATTERBERG LIMITS

ASTM D 4318

PROJECT

- **Project Name:** Carnival Cruise Substation
- **Project No.:** 11564.001
- **Boring No.:** RB-3
- **Sample No.:** R-4

SOIL IDENTIFICATION: Olive lean clay (CL)

PROCEDURES USED

- Wet Preparation
 - Multipoint - Wet
- Dry Preparation
 - Multipoint - Dry
- Procedure A
 - Multipoint Test
- Procedure B
 - One-point Test

TEST PARAMETERS

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO.</td>
<td>1</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>23.66</td>
<td>23.84</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>22.03</td>
<td>22.15</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>13.57</td>
<td>13.47</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>19.27</td>
<td>19.47</td>
</tr>
</tbody>
</table>

LIQUID LIMIT

- **Liquid Limit:** 48
- **Plastic Limit:** 19
- **Plasticity Index:** 29
- **Classification:** CL

One Point Liquid Limit Calculation

\[
LL = Wn(N/25)
\]

PI at "A" - Line = 0.73(LL-20) = 20.44

FOR CLASSIFICATION OF FINE-GRAINED SOILS AND FINE-GRAINED FRACTION OF COARSE-GRAINED SOILS
Project Name: Carnival Cruise Substation
Tested By: S. Felter
Date: 02/23/17

Project No.: 11564.001
Input By: J. Ward
Date: 03/02/17

Boring No.: RB-2
Checked By: J. Ward

Sample No.: Depth (ft.) 55.0

Soil Identification: Gray lean clay (CL)

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>23.60</td>
<td>23.68</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>21.94</td>
<td>21.99</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>13.51</td>
<td>13.58</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>19.69</td>
<td>20.10</td>
</tr>
</tbody>
</table>

Liquid Limit 43
Plastic Limit 20
Plasticity Index 23
Classification CL

PI at "A" - Line = 0.73(LL-20) 16.79
One - Point Liquid Limit Calculation

\[LL = Wn(N/25) \]

PROCEDURES USED

- [] Wet Preparation
 - Multipoint - Wet
- [X] Dry Preparation
 - Multipoint - Dry
- [X] Procedure A
 - Multipoint Test
- [] Procedure B
 - One-point Test

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils

"A" Line

CL or ML

ML or OL

MH or OH

CH or OH

Plasticity Index (PI)

Liquid Limit (LL)

Moisture Content (%)
Project Name: Carnival Cruise Substation
Tested By: S. Felter
Date: 02/24/17

Project No.: 11564.001
Input By: J. Ward
Date: 03/02/17

Boring No.: RB-2
Checked By: J. Ward

Sample No.: R-4
Depth (ft.): 40.0

Soil Identification: Olive lean clay (CL)

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows</td>
<td>[N]</td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil</td>
<td>24.04</td>
<td>24.07</td>
</tr>
<tr>
<td>Dry Wt. of Soil</td>
<td>22.56</td>
<td>22.52</td>
</tr>
<tr>
<td>Wt. of Container</td>
<td>13.55</td>
<td>13.51</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>16.43</td>
<td>17.20</td>
</tr>
</tbody>
</table>

Liquid Limit | 28 |
Plastic Limit | 17 |
Plasticity Index | 11 |
Classification | CL |

Pl at "A" - Line = 0.73(LL-20) 5.84

One-Point Liquid Limit Calculation
LL =Wn(N/25)

PROCEDURES USED

- Wet Preparation
 - Multipoint - Wet

- Dry Preparation
 - Multipoint - Dry

- Procedure A
 - Multipoint Test

- Procedure B
 - One-point Test

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils

CL or ML
ML or OL
MH or OH

"A" Line

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils

CL or OL
ML or OL
MH or OH

"A" Line
Project Name: Carnival Cruise Substation
Tested By: S. Felter
Date: 02/22/17

Project No.: 11564.001
Input By: J. Ward
Date: 03/02/17

Boring No.: RB-2
Checked By: J. Ward

Sample No.: R-2
Depth (ft.): 20.0

Soil Identification: Olive gray lean clay (CL)

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>23.97</td>
<td>23.73</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>22.47</td>
<td>22.26</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>13.52</td>
<td>13.60</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>16.76</td>
<td>16.97</td>
</tr>
</tbody>
</table>

Liquid Limit
Plastic Limit
Plasticity Index
Classification

PI at "A" - Line = 0.73(LL-20)
5.84

One - Point Liquid Limit Calculation
LL = Wn(N/25)

PLASTIC LIMIT (\%)
LIQUID LIMIT (\%)

PROCEDURES USED

- Wet Preparation
 - Multipoint - Wet
- Dry Preparation
 - Multipoint - Dry
- Procedure A
 - Multipoint Test
- Procedure B
 - One-point Test

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils

CH or OH
MH or OH
CL or OL
CL-ML
ML or OL
CL or ML

Number of Blows

Moisture Content (%)
Liquid Limit (LL)
Sample Description: Dark grayish olive sandy lean clay (CL)

Sample Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content (%)</td>
<td>38.50</td>
</tr>
<tr>
<td>Dry Density (pcf)</td>
<td>82.7</td>
</tr>
<tr>
<td>Void Ratio</td>
<td>1.037</td>
</tr>
<tr>
<td>% Saturation</td>
<td>100.3</td>
</tr>
</tbody>
</table>

Stress - Strain Curve

* Stress values have been corrected for membrane effects

Sample Measurements

Diameter (in)	1	2.424
	2	2.424
	3	2.422
Average		2.423

Height (in)	1	5.418
	2	5.417
	3	5.415
Average		5.417

Weight of Sample + Tube / Rings (g)	751.40
Weight of Tube / Rings (g)	0.00
Weight of Wet Sample + Container (g)	857.80
Weight of Dry Sample + Container (g)	649.40
Weight of Container (g)	108.10
Specific Gravity (assumed)	2.70
Confining Pressure (psi)	10.0
Rate of Deformation (in/min)	0.045

Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils

ASTM D 2850

At Failure*

<table>
<thead>
<tr>
<th>Stress Value (psi)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviator stress</td>
<td>8.81</td>
</tr>
<tr>
<td>Minor principal total stress</td>
<td>10.00</td>
</tr>
<tr>
<td>Major principal total stress</td>
<td>18.81</td>
</tr>
<tr>
<td>Axial strain (%)</td>
<td>14.95</td>
</tr>
</tbody>
</table>
Project Name: Carnival Cruise Substation
Project No: 11564.001
Boring No.: RB-3
Sample No.: R-4
Sample Description: Olive lean clay (CL)

<table>
<thead>
<tr>
<th>Diameter (in)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.398</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height (in)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>5.515</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weight of Sample + Tube / Rings (g) 711.80
Weight of Tube / Rings (g) 0.00
Weight of Wet Sample + Container (g) 815.70
Weight of Dry Sample + Container (g) 583.60
Weight of Container (g) 108.08
Specific Gravity (assumed) 2.70
Confining Pressure (psi) 5.0
Rate of Deformation (in/min) 0.045

<table>
<thead>
<tr>
<th>Sample Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content (%)</td>
<td>48.81</td>
</tr>
<tr>
<td>Dry Density (pcf)</td>
<td>73.2</td>
</tr>
<tr>
<td>Void Ratio</td>
<td>1.302</td>
</tr>
<tr>
<td>% Saturation</td>
<td>101.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>At Failure*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviator stress (psi)</td>
<td>3.65</td>
</tr>
<tr>
<td>Minor principal total stress (psi)</td>
<td>5.00</td>
</tr>
<tr>
<td>Major principal total stress (psi)</td>
<td>8.65</td>
</tr>
<tr>
<td>Axial strain (%)</td>
<td>14.87</td>
</tr>
</tbody>
</table>

* Stress values have been corrected for membrane effects

Stress - Strain Curve
Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
ASTM D 2850

Project Name: Carnival Cruise Substation
Project No: 11564.001
Boring No.: RB-2
Sample No.: R-4
Sample Description: Olive lean clay (CL)

<table>
<thead>
<tr>
<th>Diameter (in)</th>
<th>1</th>
<th>2.425</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2.425</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.426</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>2.425</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height (in)</th>
<th>1</th>
<th>5.105</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>5.103</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.100</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>5.103</td>
</tr>
</tbody>
</table>

Weight of Sample + Tube / Rings (g) 766.60
Weight of Tube / Rings (g) 0.00
Weight of Wet Sample + Container (g) 873.00
Weight of Dry Sample + Container (g) 695.50
Weight of Container (g) 111.90
Specific Gravity (assumed) 2.70
Confining Pressure (psi) 6.5
Rate of Deformation (in/min) 0.045

Sample Properties
Moisture Content (%) 30.41
Dry Density (pcf) 95.0
Void Ratio 0.774
% Saturation 106.1

At Failure*
Deviator stress (psi) 14.65
Minor principal total stress (psi) 6.50
Major principal total stress (psi) 21.15
Axial strain (%) 15.09

* Stress values have been corrected for membrane effects

Stress - Strain Curve
Soil Identification: Olive silty sand (SM), some clay chunks noted

Project Name: Carnival Cruise Substation
Project No.: 11564.001

Boring No.: RB-1
Sample No.: BB-1
Depth (feet): 0-5
Soil Type: SM

GR:SA:FI (%): 9 : 67 : 24

Leighton
PARTICLE - SIZE DISTRIBUTION
ASTM D 6913

Mar-1/
Project Name: Carnival Cruise Substation
Project No.: 11564.001
Boring No.: RB-2 Sample No.: R-4
Depth (feet): 40.0 Soil Type: CL
Soil Identification: Olive lean clay (CL)
GR:SA:FI : (%) 0 : 6 : 94
Soil Identification: Olive brown silt (ML)

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Sample No.</th>
<th>Depth (ft.)</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Void Ratio</th>
<th>Degree of Saturation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-1</td>
<td>R-10</td>
<td>95.0</td>
<td>26.5</td>
<td>97.5</td>
<td>0.735</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.1</td>
<td>100.7</td>
<td>0.656</td>
<td>100</td>
</tr>
</tbody>
</table>

Inundate with Tap water
SOIL RESISTIVITY TEST
DOT CA TEST 643

Project Name: Carnival Cruise Terminal
Project No.: 12018.001
Boring No.: LB-1
Sample No.: R-1
Date: 06/25/18
Tested By: O. Figueroa
Data Input By: J. Ward
Depth (ft.): 5.0

Soil Identification: Olive SP, shells noted

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Water Added (ml) (Wa)</th>
<th>Adjusted Moisture Content (MC)</th>
<th>Resistance Reading (ohm)</th>
<th>Soil Resistivity (ohm-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>31.21</td>
<td>11000</td>
<td>11000</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>38.93</td>
<td>10300</td>
<td>10300</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>46.65</td>
<td>10500</td>
<td>10500</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moisture Content (%)(MCi) = 0.34
Wet Wt. of Soil + Cont. (g) = 225.58
Dry Wt. of Soil + Cont. (g) = 225.02
Wt. of Container (g) = 58.52
Container No.
Initial Soil Wt. (g) (Wt) = 130.00
Box Constant = 1.000

MC = (((1 + Mci/100) x (Wa/Wt+1)) - 1) x 100

<table>
<thead>
<tr>
<th>Min. Resistivity (ohm-cm)</th>
<th>Moisture Content (%)</th>
<th>Sulfate Content (ppm)</th>
<th>Chloride Content (ppm)</th>
<th>Soil pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT CA Test 643</td>
<td>DOT CA Test 417 Part II</td>
<td>DOT CA Test 422</td>
<td>DOT CA Test 643</td>
<td></td>
</tr>
<tr>
<td>10280</td>
<td>40.1</td>
<td>33</td>
<td>40</td>
<td>8.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.4</td>
</tr>
</tbody>
</table>

Min. Resistivity (ohm-cm) vs. Moisture Content (%)

<table>
<thead>
<tr>
<th>Moisture Content (%)</th>
<th>Soil Resistivity (ohm-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
<td>11200</td>
</tr>
<tr>
<td>30.0</td>
<td>11000</td>
</tr>
<tr>
<td>35.0</td>
<td>10800</td>
</tr>
<tr>
<td>40.0</td>
<td>10600</td>
</tr>
<tr>
<td>45.0</td>
<td>10400</td>
</tr>
<tr>
<td>50.0</td>
<td>10200</td>
</tr>
</tbody>
</table>

Graph showing the relationship between Moisture Content (%) and Soil Resistivity (ohm-cm).
SOIL RESISTIVITY TEST
DOT CA TEST 643

Project Name: Carnival Parking Structure
Project No.: 12018.001
Boring No.: LB-2
Sample No.: BB-1

Soil Identification: Olive SP

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Water Added (ml) (Wa)</th>
<th>Adjusted Moisture Content (MC)</th>
<th>Resistance Reading (ohm)</th>
<th>Soil Resistivity (ohm-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>19.11</td>
<td>3700</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>27.05</td>
<td>3200</td>
<td>3200</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>34.99</td>
<td>3300</td>
<td>3300</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Moisture Content (% (MCi))</th>
<th>Wet Wt. of Soil + Cont. (g)</th>
<th>Dry Wt. of Soil + Cont. (g)</th>
<th>Wt. of Container (g)</th>
<th>Container No.</th>
<th>Initial Soil Wt. (g) (Wt)</th>
<th>Box Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.23</td>
<td>215.31</td>
<td>210.20</td>
<td>51.86</td>
<td></td>
<td>130.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MC = (((1 + Mci/100) x (Wa/Wt+1)) - 1) x 100

Min. Resistivity (ohm-cm)	Moisture Content (%)	Sulfate Content (ppm)	Chloride Content (ppm)	Soil pH
DOT CA Test 643 | DOT CA Test 417 Part II | DOT CA Test 422 | DOT CA Test 643 |
3180 | 28.6 | 782 | 52 | 8.07 | 22.3

Graph showing the relationship between Soil Resistivity (ohm-cm) and Moisture Content (%).
Boring No. LB-1
Sample No. R-10
Depth (ft) 95
Sample Type: Ring
Soil Identification: Olive brown silt (ML)

Strength Parameters

<table>
<thead>
<tr>
<th></th>
<th>C (psf)</th>
<th>ϕ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>692</td>
<td>30</td>
</tr>
<tr>
<td>Ultimate</td>
<td>234</td>
<td>29</td>
</tr>
</tbody>
</table>

Consolidated Undrained

| Project No.: | 12018.001 |

DIRECT SHEAR TEST RESULTS

Carnival Cruise Terminal

<table>
<thead>
<tr>
<th>Normal Stress (kip/ft²)</th>
<th>2.000</th>
<th>4.000</th>
<th>8.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Shear Stress (kip/ft²)</td>
<td>1.798</td>
<td>3.144</td>
<td>5.357</td>
</tr>
<tr>
<td>Shear Stress @ End of Test (ksf)</td>
<td>1.324</td>
<td>2.484</td>
<td>4.665</td>
</tr>
<tr>
<td>Deformation Rate (in./min.)</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

Initial Sample Height (in.)	1.000	1.000	1.000
Diameter (in.)	2.415	2.415	2.415
Initial Moisture Content (%)	26.48	26.48	26.48
Dry Density (pcf)	97.7	98.7	98.8
Saturation (%)	98.7	100.9	101.2
Soil Height Before Shearing (in.)	0.9793	0.9646	0.9405
Final Moisture Content (%)	27.1	25.9	25.3

06-18
Project No.: 12018.001

Carnival Cruise Terminal

Table 1: Direct Shear Test Results

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Sample No.</th>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Soil Identification</th>
<th>Normal Stress (kip/ft²)</th>
<th>Peak Shear Stress (kip/ft²)</th>
<th>Shear Stress @ End of Test (ksf)</th>
<th>Deformation Rate (in./min.)</th>
<th>Initial Sample Height (in.)</th>
<th>Diameter (in.)</th>
<th>Initial Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Saturation (%)</th>
<th>Soil Height Before Shearing (in.)</th>
<th>Final Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-1</td>
<td>R-11</td>
<td>105</td>
<td>Ring</td>
<td>Gray silt (ML)</td>
<td>2.000</td>
<td>1.509</td>
<td>1.292</td>
<td>0.0025</td>
<td>1.000</td>
<td>2.415</td>
<td>27.29</td>
<td>98.4</td>
<td>104.6</td>
<td>0.9669</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Strength Parameters

- C (psf)
 - Peak: 409
 - Ultimate: 72
- ϕ (°)
 - Peak: 30
 - Ultimate: 30

Leighton

DIRECT SHEAR TEST RESULTS
Consolidated Drained - ASTM D 3080

06-18
DIRECT SHEAR TEST RESULTS
Consolidated Undrained

Carnival Parking Structure

Boring No. LB-2
Sample No. R-7
Depth (ft) 90
Sample Type: Ring
Soil Identification: Olive silt (ML)

<table>
<thead>
<tr>
<th>Strength Parameters</th>
<th>C (psf)</th>
<th>φ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>258</td>
<td>36</td>
</tr>
<tr>
<td>Ultimate</td>
<td>43</td>
<td>33</td>
</tr>
</tbody>
</table>

| Project No. | 12018.001 |

<table>
<thead>
<tr>
<th>Normal Stress (kip/ft²)</th>
<th>2.000</th>
<th>4.000</th>
<th>8.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Shear Stress (kip/ft²)</td>
<td>1.764</td>
<td>3.175</td>
<td>6.187</td>
</tr>
<tr>
<td>Shear Stress @ End of Test (ksf)</td>
<td>1.374</td>
<td>2.656</td>
<td>5.319</td>
</tr>
<tr>
<td>Deformation Rate (in./min.)</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

Initial Sample Height (in.)	1.000	1.000	1.000
Diameter (in.)	2.415	2.415	2.415
Initial Moisture Content (%)	25.35	25.35	25.35
Dry Density (pcf)	97.2	99.4	101.6
Saturation (%)	93.2	98.3	103.8
Soil Height Before Shearing (in.)	0.9887	0.9818	0.9741
Final Moisture Content (%)	27.6	25.4	23.9
ATTERBERG LIMITS

ASTM D 4318

Project Name: Carnival Cruise Terminal
Tested By: R. Manning
Date: 06/18/18

Project No.: 12018.001
Input By: J. Ward
Date: 06/21/18

Boring No.: LB-1
Checked By: J. Ward

Sample No.: R-3
Depth (ft.): 25.0

Soil Identification: Olive silty sand (SM)

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>Cannot be rolled: 26.59</td>
<td>Cannot get more than 4 blows:</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>NonPlastic 23.48</td>
<td>NonPlastic</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>13.58</td>
<td></td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>31.41</td>
<td></td>
</tr>
</tbody>
</table>

Liquid Limit | NP
Plastic Limit | NP
Plasticity Index | NP
Classification | NP

Plasticity Index (PI) = NonPlastic (NP)

Liquid Limit (LL) = NonPlastic (NP)

Classification:

CL or OL
ML or OL
MH or OH

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils

"A" Line

One - Point Liquid Limit Calculation

LL = Wn(N/25)^0.121

PROCEDURES USED

- Wet Preparation
 Multipoint - Wet

- Dry Preparation
 Multipoint - Dry

- Procedure A
 Multipoint Test

- Procedure B
 One-point Test
ATTERBERG LIMITS

ASTM D 4318

Project Name: Carnival Cruise Terminal
Tested By: R. Manning
Date: 06/18/18

Project No.: 12018.001
Input By: J. Ward
Date: 06/21/18

Boring No.: LB-1
Checked By: J. Ward

Sample No.: R-5
Depth (ft.): 45.0

Soil Identification: Dark gray fat clay (CH)

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>17.99</td>
<td>18.19</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>16.46</td>
<td>16.74</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.15</td>
<td>11.75</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>28.81</td>
<td>29.06</td>
</tr>
</tbody>
</table>

Liquid Limit

- Number of Blows [N]: 56
- Wet Wt. of Soil + Cont. (g): 17.99
- Dry Wt. of Soil + Cont. (g): 16.46
- Wt. of Container (g): 11.15
- Moisture Content (%) [Wn]: 28.81

Plastic Limit

- Wet Prep - Multipoint
- Dry Prep - Multipoint
- Procedure A
- Procedure B

One-Point Liquid Limit Calculation

\[LL = Wn \left(\frac{N}{25} \right) \]

Liquid Limit: 56
Plastic Limit: 29
Plasticity Index: 27
Classification: CH

\[PI \text{ at "A" - Line } = 0.73(LL-20) \]

\[PI = 26.28 \]

PROCEDURES USED

- Wet Preparation
 - Multipoint - Wet
- Dry Preparation
 - Multipoint - Dry
- Procedure A
 - Multipoint Test
- Procedure B
 - One-point Test

For classification of fine-grained soils and fine-grained fraction of coarse-grained soils

CH or OH

CL or OL

ML or OL

MH or OH

"A" Line
ATTERBERG LIMITS

ASTM D 4318

Project Name: Carnival Cruise Terminal
Tested By: R. Manning
Date: 06/18/18

Project No.: 12018.001
Input By: J. Ward
Date: 06/21/18

Boring No.: LB-1
Checked By: J. Ward

Sample No.: R-7
Depth (ft.): 65.0

Soil Identification: Dark olive gray sandy silt s(ML)

Soil Identification: Dark olive gray sandy silt s(ML)

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>PLASTIC LIMIT (g)</th>
<th>LIQUID LIMIT (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.93</td>
<td>17.94</td>
</tr>
<tr>
<td>2</td>
<td>23.78</td>
<td>22.32</td>
</tr>
<tr>
<td>3</td>
<td>24.72</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wet Preparation

- Multipoint - Wet

Dry Preparation

- Multipoint - Dry

Procedure A

- Multipoint Test

Procedure B

- One-point Test

Liquid Limit: 33
Plastic Limit: 26
Plasticity Index: 7
Classification: ML

Plasticity Index (PI) at "A" Line = 0.73(LL-20)
9.49

One Point Liquid Limit Calculation
LL = Wn(N/25)

PROCEDURES USED

- Wet Preparation
 Multipoint - Wet

- Dry Preparation
 Multipoint - Dry

- Procedure A
 Multipoint Test

- Procedure B
 One-point Test
ATTERBERG LIMITS
ASTM D 4318

TEST
ASTM D 4318

PROJECT NAME: Carnival Parking Structure
Tested By: R. Manning
Date: 07/05/18

Project No.: 12018.001
Input By: J. Ward
Date: 07/06/18

Boring No.: LB-2
Checked By: J. Ward

Sample No.: R-2
Depth (ft.): 35.0

Soil Identification: Gray lean clay (CL)

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>18.19</td>
<td>18.53</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>16.66</td>
<td>16.93</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.05</td>
<td>11.09</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>27.27</td>
<td>27.40</td>
</tr>
</tbody>
</table>

Liquid Limit
46

Plastic Limit
27

Plasticity Index
19

Classification
CL

Plasticity Index (PI)
CL or OL
ML or OL
MH or OH

PROCEDURES USED

- **Wet Preparation**
 Multipoint - Wet

- **X**
 Dry Preparation
 Multipoint - Dry

- **X**
 Procedure A
 Multipoint Test

- **Procedure B**
 One-point Test

PI at “A” - Line = 0.73(LL-20)
18.98

One - Point Liquid Limit Calculation
LL =Wn(N/25)
ATTERBERG LIMITS

ASTM D 4318

Project Name: Carnival Parking Structure
Tested By: R. Manning
Date: 07/03/18

Project No.: 12018.001
Input By: J. Ward
Date: 07/06/18

Boring No.: LB-2
Checked By: J. Ward

Sample No.: R-7
Depth (ft.): 90.0

Soil Identification: Olive sandy silt s(ML)

PLASTIC LIMIT

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>Cannot be rolled: 24.04</td>
<td>Cannot get more than 2 blows: NonPlastic</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>NonPlastic 20.67</td>
<td>NonPlastic</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.64</td>
<td></td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>37.32</td>
<td></td>
</tr>
</tbody>
</table>

Liquid Limit

NP

Plastic Limit

NP

Plasticity Index

NP

Classification

NP

\[
\text{PI at "A" - Line} = 0.73(\text{LL-20}) = \frac{0.121}{N}
\]

One-Point Liquid Limit Calculation

\[
\text{LL} = \text{Wn}(N/25)
\]

PROCEDURES USED

- [] Wet Preparation
 - Multipoint - Wet
- [x] Dry Preparation
 - Multipoint - Dry
- [x] Procedure A
 - Multipoint Test
- [] Procedure B
 - One-point Test

Graphs

- Graph showing liquid limit and plastic limit calculations.
- Graph showing plasticity index and classification.
- Graph showing number of blows and moisture content.
<table>
<thead>
<tr>
<th>GRAVEL</th>
<th>SAND</th>
<th>FINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE</td>
<td>FINE</td>
<td>Silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. STANDARD SIEVE OPENING</th>
<th>U.S. STANDARD SIEVE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0"</td>
<td>#4</td>
</tr>
<tr>
<td>1 1/2"</td>
<td>#8</td>
</tr>
<tr>
<td>3/4"</td>
<td>#16</td>
</tr>
<tr>
<td>3/8"</td>
<td>#30</td>
</tr>
<tr>
<td>#4</td>
<td>#50</td>
</tr>
<tr>
<td>#16</td>
<td>#100</td>
</tr>
<tr>
<td>#30</td>
<td>#200</td>
</tr>
</tbody>
</table>

Soil Identification: Olive gray sandy silt (s(ML))

Project Name: Carnival Cruise Terminal

Project No.: 12018.001

Boring No.: LB-1

Sample No.: R-12

Depth (feet): 115.0

Soil Type: s(ML)

GR:SA:FI (%): 0 : 30 : 70

Date: Jun-18
Project Name: Carnival Parking Structure
Project No.: 12018.001
Boring No.: LB-2 Sample No.: R-7
Depth (feet): 90.0 Soil Type: s(ML)
Soil Identification: Olive sandy silt s(ML)
GR:SA:FI (%): 0 : 37 : 63

GRAVEL	SAND	FINES
COARSE | FINE | CRSE | MEDIUM | FINE | SILT | CLAY
U.S. STANDARD SIEVE OPENING | U.S. STANDARD SIEVE NUMBER | HYDROMETER
3.0" | 1 ½" | 3/4" | 3/8" | #4 | #8 | #16 | #30 | #50 | #100 | #200

PARTICLE SIZE DISTRIBUTION
ASTM D 422

Jul-18
Project Name: Carnival Cruise Terminal
Project No: 12018.001
Boring No.: LB-1
Sample No.: R-12
Sample Description: Olive gray sandy silt s(ML)

Diameter (in)	1	2.415
	2	2.415
	3	2.414
Average		2.415

Height (in)	1	5.668
	2	5.666
	3	5.665
Average		5.666

Weight of Sample + Tube / Rings (g) 838.5
Weight of Tube / Rings (g) 0.0
Weight of Wet Sample + Container (g) 914.8
Weight of Dry Sample + Container (g) 746.4
Weight of Container (g) 77.6
Specific Gravity (assumed) 2.70
Confining Pressure (psi) 27.8
Rate of Deformation (in/min) 0.045

Sample Properties
Moisture Content (%)	25.18
Dry Density (pcf)	98.3
Void Ratio	0.713
% Saturation	95.3

<table>
<thead>
<tr>
<th>At Failure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviator stress (psi)</td>
</tr>
<tr>
<td>Minor principal total stress (psi)</td>
</tr>
<tr>
<td>Major principal total stress (psi)</td>
</tr>
<tr>
<td>Axial strain (%)</td>
</tr>
</tbody>
</table>

* Stress values have been corrected for membrane effects

Stress - Strain Curve
B-3
Leighton Consulting, Inc.
(July, 2018)
MOISTURE CONTENT

ASTM D 2216

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Sample No.</th>
<th>Sample Type</th>
<th>Sample Description</th>
<th>Wt. wet soil + container (g)</th>
<th>Wt. dry soil + container (g)</th>
<th>Weight of container (g)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>S-1</td>
<td>SPT</td>
<td>Gray fat clay (CH)</td>
<td>708.46</td>
<td>468.40</td>
<td>70.93</td>
<td>60</td>
</tr>
<tr>
<td>B-1</td>
<td>S-2</td>
<td>SPT</td>
<td>Gray sandy silt (ML)</td>
<td>251.71</td>
<td>200.60</td>
<td>43.70</td>
<td>33</td>
</tr>
<tr>
<td>B-2</td>
<td>R-1</td>
<td>Ring</td>
<td>Dark olive gray silt (ML)</td>
<td>188.53</td>
<td>147.93</td>
<td>58.68</td>
<td>45</td>
</tr>
<tr>
<td>B-3-1</td>
<td>S-1</td>
<td>SPT</td>
<td>Gray silt (ML)</td>
<td>447.43</td>
<td>279.00</td>
<td>51.99</td>
<td>74</td>
</tr>
</tbody>
</table>

Moisture Content (%)
<table>
<thead>
<tr>
<th>GRAVEL</th>
<th>SAND</th>
<th>FINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE</td>
<td>FINE</td>
<td>CRSE MEDIUM</td>
</tr>
<tr>
<td>U.S. STANDARD SIEVE OPENING</td>
<td>U.S. STANDARD SIEVE NUMBER</td>
<td>HYDROMETER</td>
</tr>
<tr>
<td>3.0" 1 1/2" 3/4" 3/8" #4 #8 #16 #30 #50 #100 #200</td>
<td>Project No.: Atkins Carnival</td>
<td></td>
</tr>
</tbody>
</table>

Soil Type:	12096.001
	Depth (feet): 12.0
	Soil Identification: Dark olive gray silt (ML)
	GR:SA:FI (%): 0:6:94
	Project No.: B-1 R-2

Hydro B-1, R-2 @ 12.0
GRAVEL	SAND	FINES
COARSE | FINE | CRSE | MEDIUM | FINE | SILT | CLAY
U.S. STANDARD SIEVE OPENING | U.S. STANDARD SIEVE NUMBER | HYDROMETER
3.0" | 1 1/2" | 3/4" | 3/8" | #4 | #8 | #16 | #30 | #50 | #100 | #200

Project Name: Atkins Carnival
Project No.: 12096.001

Boring No.: B-1
Sample No.: S-1
Depth (feet): 7.0
Soil Type: CH

Soil Identification: Gray fat clay (CH)
GR:SA:FI: (%) 0: 2: 98

Hydro B-1, S-1 @ 7.0
Project Name: Atkins Carnival
Project No.: 12096.001

Boring No.: LB-1
Sample No.: R-5
Depth (feet): 42.0
Soil Type: CH
Soil Identification: Dark gray fat clay (CH)

GR:SA:FI : (%) 0 : 1 : 99

PARTICLE - SIZE DISTRIBUTION
ASTM D 422

Leighton

Hydro LB-1, R-5 @ 42.0
<table>
<thead>
<tr>
<th>GRAVEL</th>
<th>SAND</th>
<th>FINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE</td>
<td>CRSE</td>
<td>FINE</td>
</tr>
<tr>
<td>FINE</td>
<td>MEDIUM</td>
<td>SILT</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>#4</td>
<td>#8</td>
</tr>
<tr>
<td>CRSE</td>
<td>#8</td>
<td>#16</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>#30</td>
<td>#50</td>
</tr>
<tr>
<td>FINE</td>
<td>#100</td>
<td>#200</td>
</tr>
</tbody>
</table>

U.S. STANDARD SIEVE OPENING

<table>
<thead>
<tr>
<th>3.0"</th>
<th>1 1/2"</th>
<th>3/4"</th>
<th>3/8"</th>
<th>#4</th>
<th>#8</th>
<th>#16</th>
<th>#30</th>
<th>#50</th>
<th>#100</th>
<th>#200</th>
</tr>
</thead>
</table>

U.S. STANDARD SIEVE NUMBER

HYDROMETER

Project No.: 12096.001
Sample No.: T-2
Depth (feet): 8.0
Soil Type: CL
Soil Identification: Olive gray lean clay (CL)
GR:SA:FI (%): 0 : 0 : 100

Leighton

PARTICLE - SIZE DISTRIBUTION

ASTM D 422

Project Name: Atkins Carnival
Boring No.: B-2
Sample No.: T-2
Depth (feet): 8.0
Soil Type: CL
Soil Identification: Olive gray lean clay (CL)
GR:SA:FI (%): 0 : 0 : 100

Nov-18
Consolidated Undrained Triaxial Compression Test

ASTM D 4767

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>T-2</td>
<td>8.0</td>
<td>2.8</td>
<td>3.8</td>
</tr>
<tr>
<td>B-2</td>
<td>T-2</td>
<td>8.0</td>
<td>5.6</td>
<td>5.5</td>
</tr>
<tr>
<td>B-2</td>
<td>T-2</td>
<td>8.0</td>
<td>11.1</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Mohr Circle based on Total Stress
Mohr Circle based on Effective Stress
CU TRIAXIAL TEST CONSOLIDATION CURVE

Project Name: Atkins Carnival

Project No.: 12096.001

Boring No.: B-2

Sample No.: T-2

Depth (ft.): 8.0

Eff. Stress (psi): 2.80

Burette Area: 0.357 in²

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Elapsed Time (min)</th>
<th>Square Root Time (min½)</th>
<th>Dial Rdgs (in.)</th>
<th>Burette Rdgs (cm.)</th>
<th>Volume Change (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/14/18</td>
<td>8:26:00</td>
<td></td>
<td></td>
<td></td>
<td>6.40</td>
<td>0.1</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:26:06</td>
<td>0.10</td>
<td>0.32</td>
<td></td>
<td>6.45</td>
<td>0.2</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:26:15</td>
<td>0.25</td>
<td>0.50</td>
<td></td>
<td>6.50</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:28:00</td>
<td>0.50</td>
<td>0.71</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:28:00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:30:00</td>
<td>2.00</td>
<td>1.41</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:30:00</td>
<td>4.00</td>
<td>2.00</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:34:00</td>
<td>8.00</td>
<td>2.83</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:42:00</td>
<td>16.00</td>
<td>4.00</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:56:00</td>
<td>30.00</td>
<td>5.48</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>9:26:00</td>
<td>60.00</td>
<td>7.75</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>10:26:00</td>
<td>120.00</td>
<td>10.95</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>12:26:00</td>
<td>240.00</td>
<td>15.49</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>16:26:00</td>
<td>480.00</td>
<td>21.91</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
<tr>
<td>08/15/18</td>
<td>8:26:00</td>
<td>1440.00</td>
<td>37.95</td>
<td></td>
<td>6.55</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Height After Consolidation (in): 5.885

Strain Rate (in/min): 0.0942

Duration of Test* (hr): 0.2

*Based on a total strain of 15%

Height (ft): 5.967

Average: 5.968

Dial Readings: 0.2400

Saturation: 0.3100

Consolidation: 0.3110

Final Rdg. (in): 0.3220
CU TRIAXIAL TEST CONSOLIDATION CURVE

Project Name: Atkins Carnival
Project No.: 12096.001
Boring No.: B-2
Sample No.: T-2
Tested By: A. Santos
Depth (ft.): 8.0
Eff. Stress (psi): 5.60
Burette Area: 0.358 in²

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Elapsed Time (min)</th>
<th>Square Root Time (min½)</th>
<th>Dial Rdgs (in.)</th>
<th>Burette Rdgs (cm.)</th>
<th>Volume Change (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/14/18</td>
<td>8:15:00</td>
<td>Initial Burette</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:15:06</td>
<td>0.10</td>
<td>0.32</td>
<td>4.20</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:15:15</td>
<td>0.25</td>
<td>0.50</td>
<td>4.25</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:15:30</td>
<td>0.50</td>
<td>0.71</td>
<td>4.30</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:16:00</td>
<td>1.00</td>
<td>1.00</td>
<td>4.35</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:17:00</td>
<td>2.00</td>
<td>1.41</td>
<td>4.40</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:19:00</td>
<td>4.00</td>
<td>2.00</td>
<td>4.45</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:23:00</td>
<td>8.00</td>
<td>2.83</td>
<td>4.50</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:31:00</td>
<td>16.00</td>
<td>4.00</td>
<td>4.55</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:45:00</td>
<td>30.00</td>
<td>5.48</td>
<td>4.60</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>9:15:00</td>
<td>60.00</td>
<td>7.75</td>
<td>4.70</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>10:59:00</td>
<td>164.00</td>
<td>12.81</td>
<td>4.70</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>12:15:00</td>
<td>240.00</td>
<td>15.49</td>
<td>4.70</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>08/14/18</td>
<td>16:15:00</td>
<td>480.00</td>
<td>21.91</td>
<td>4.70</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>08/15/18</td>
<td>8:15:00</td>
<td>1440.00</td>
<td>37.95</td>
<td>4.70</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

Graph: CU TRIAXIAL TEST CONSOLIDATION CURVE

- **V₀ (cc):** 0.35
- **V₁₀₀ (cc):** 1.62
- **V₅₀ (cc):** 0.98
- **ₜ₅₀ (min):** 2.90

Height After Consolidation (in): 5.491
Strain Rate (in/min): **0.0076**
Duration of Test* (hr): 1.8

*Based on a total strain of 15%

| Height (ft) | 5.732
| Saturation | 5.730
| Average | 5.733
| Dial Readings | 0.2050
| Saturation | 0.3240
| Final Rdg. (in) | 0.3250
| Consolidation | 0.4450
| *Based on a total strain of 15% |
CU TRIAXIAL TEST CONSOLIDATION CURVE

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Elapsed Time (min)</th>
<th>Elapsed Time (min½)</th>
<th>Dial Rdgs (in.)</th>
<th>Burette Rdgs (cm.)</th>
<th>Volume Change (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/13/18</td>
<td>8:48:00</td>
<td></td>
<td></td>
<td>Initial Burette</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:48:06</td>
<td>0.10</td>
<td>0.32</td>
<td></td>
<td>5.20</td>
<td>0.8</td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:48:15</td>
<td>0.25</td>
<td>0.50</td>
<td></td>
<td>5.30</td>
<td>1.0</td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:48:30</td>
<td>0.50</td>
<td>0.71</td>
<td></td>
<td>5.45</td>
<td>1.4</td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:49:00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>5.50</td>
<td>1.5</td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:50:00</td>
<td>2.00</td>
<td>1.41</td>
<td></td>
<td>5.60</td>
<td>1.8</td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:52:00</td>
<td>4.00</td>
<td>2.00</td>
<td></td>
<td>5.70</td>
<td>2.0</td>
</tr>
<tr>
<td>08/13/18</td>
<td>8:56:00</td>
<td>8.00</td>
<td>2.83</td>
<td></td>
<td>5.75</td>
<td>2.2</td>
</tr>
<tr>
<td>08/13/18</td>
<td>9:04:00</td>
<td>16.00</td>
<td>4.00</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
<tr>
<td>08/13/18</td>
<td>9:18:00</td>
<td>30.00</td>
<td>5.48</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
<tr>
<td>08/13/18</td>
<td>9:48:00</td>
<td>60.00</td>
<td>7.75</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
<tr>
<td>08/13/18</td>
<td>10:48:00</td>
<td>120.00</td>
<td>10.95</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
<tr>
<td>08/13/18</td>
<td>12:48:00</td>
<td>240.00</td>
<td>15.49</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
<tr>
<td>08/13/18</td>
<td>16:48:00</td>
<td>480.00</td>
<td>21.91</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
<tr>
<td>08/14/18</td>
<td>8:48:00</td>
<td>1440.00</td>
<td>37.95</td>
<td></td>
<td>5.80</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Graphical Representation

Key Data Points

- **V_0 (cc)**: 0.51
- **V_{100} (cc)**: 2.31
- **V_{50} (cc)**: 1.41
- **t_{50} (min)**: 0.50
- **Height After Consolidation (in)**: 5.626
- **Strain Rate (in/min)**: 0.0450
- **Duration of Test* (hr)**: 0.3

*Based on a total strain of 15%
<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Atkins Carnival</th>
<th>Tested By:</th>
<th>A. Santos</th>
<th>Date: 08/12/18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No:</td>
<td>12096.001</td>
<td>Checked By:</td>
<td>J. Ward</td>
<td>Date: 08/23/18</td>
</tr>
<tr>
<td>Boring No.:</td>
<td>B-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample No.:</td>
<td>T-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (ft.):</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Shelby</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSOLIDATED UNDRAINED TRIAXIAL TEST

ASTM D 4767

<table>
<thead>
<tr>
<th>Stress Application (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
</tr>
<tr>
<td>5.6</td>
</tr>
<tr>
<td>11.1</td>
</tr>
</tbody>
</table>
DIRECT SHEAR TEST RESULTS

Consolidated Undrained

Project No.: 12098.001

Atkins Carnival

Boring Number:

- B-1
- B-1
- B-1
- B-2
- B-2
- B-2
- B-3-2
- B-3-2
- B-3-2

Sample Number:

- R-2
- R-2
- R-2
- R-1
- R-1
- R-1
- R-2
- R-2
- R-3

Symbol

- ●
- ▲
- ▼
- ●
- ●
- ▲
- ▼
- ●

Normal Stress (kip/square-foot) or (ksf):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Peak Shear Stress (ksf):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>0.43</th>
<th>0.66</th>
<th>1.24</th>
<th>0.68</th>
<th>1.30</th>
<th>2.80</th>
<th>0.35</th>
<th>0.61</th>
<th>1.00</th>
</tr>
</thead>
</table>

Shear Stress at end of test (ksf):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>0.42</th>
<th>0.66</th>
<th>1.24</th>
<th>0.68</th>
<th>1.28</th>
<th>2.66</th>
<th>0.32</th>
<th>0.61</th>
<th>1.00</th>
</tr>
</thead>
</table>

Deformation Rate (inches/minute):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
</tr>
</thead>
</table>

Initial Sample Height (inches):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>0.9720</th>
<th>0.9462</th>
<th>0.9112</th>
<th>0.9399</th>
<th>0.8900</th>
<th>0.9439</th>
<th>0.9385</th>
<th>0.9096</th>
<th>0.9079</th>
</tr>
</thead>
</table>

Diameter (inches):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>2.415</th>
</tr>
</thead>
</table>

Initial Moisture Content (%):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>45</th>
<th>45</th>
<th>45</th>
<th>56</th>
<th>48</th>
<th>55</th>
</tr>
</thead>
</table>

Dry Density (pcf):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>70</th>
<th>72</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>77</th>
<th>67</th>
<th>73</th>
<th>68</th>
</tr>
</thead>
</table>

Saturation (%):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>97</th>
<th>101</th>
<th>102</th>
<th>95</th>
<th>95</th>
<th>104</th>
<th>102</th>
<th>99</th>
<th>101</th>
</tr>
</thead>
</table>

Soil Height Before Shearing (inches):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>0.9720</th>
<th>0.9462</th>
<th>0.9112</th>
<th>0.9399</th>
<th>0.8900</th>
<th>0.9439</th>
<th>0.9385</th>
<th>0.9096</th>
<th>0.9079</th>
</tr>
</thead>
</table>

Final Moisture Content (%):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>45</th>
<th>40</th>
<th>38</th>
<th>42</th>
<th>42</th>
<th>37</th>
<th>31</th>
<th>41</th>
<th>38</th>
<th>46</th>
</tr>
</thead>
</table>

Leighton
<table>
<thead>
<tr>
<th>Boring Number:</th>
<th>B-1</th>
<th>B-1</th>
<th>B-1</th>
<th>B-2</th>
<th>B-2</th>
<th>B-3-2</th>
<th>B-3-2</th>
<th>B-3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number:</td>
<td>R-6</td>
<td>R-8</td>
<td>R-10</td>
<td>R-4</td>
<td>R-4A</td>
<td>R-1</td>
<td>R-2</td>
<td>R-3</td>
</tr>
<tr>
<td>Symbol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Stress (kip/square-foot) or (ksf):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>6.5</td>
<td>2.5</td>
<td>3.6</td>
<td>0.5</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>Peak Shear Stress (ksf):</td>
<td>2.26</td>
<td>3.26</td>
<td>4.56</td>
<td>3.05</td>
<td>3.11</td>
<td>0.35</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>Shear Stress at end of test (ksf):</td>
<td>2.02</td>
<td>2.76</td>
<td>3.81</td>
<td>1.68</td>
<td>2.32</td>
<td>0.32</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>Deformation Rate (inches/minute):</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Initial Sample Height (inches):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (inches):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Moisture Content (%):</td>
<td>24</td>
<td>28</td>
<td>25</td>
<td>13</td>
<td>24</td>
<td>58</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>Dry Density (pcf):</td>
<td>97</td>
<td>96</td>
<td>97</td>
<td>125</td>
<td>103</td>
<td>67</td>
<td>73</td>
<td>68</td>
</tr>
<tr>
<td>Saturation (%):</td>
<td>88</td>
<td>98</td>
<td>93</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>99</td>
<td>101</td>
</tr>
<tr>
<td>Soil Height Before Shearing (inches):</td>
<td>0.9714</td>
<td>0.9672</td>
<td>0.9630</td>
<td>0.9838</td>
<td>0.9688</td>
<td>0.9385</td>
<td>0.9096</td>
<td>0.9079</td>
</tr>
<tr>
<td>Final Moisture Content (%):</td>
<td>28</td>
<td>30</td>
<td>33</td>
<td>13</td>
<td>25</td>
<td>41</td>
<td>38</td>
<td>46</td>
</tr>
</tbody>
</table>

DIRECT SHEAR TEST RESULTS
Consolidated Undrained

Project No.: 12096.001
Atkins Carnival
DIRECT SHEAR TEST RESULTS

Consolidated Undrained

Project No.: 12096.001
Atkins Carnival

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Sample No.</th>
<th>Depth (ft)</th>
<th>Sample Type</th>
<th>Soil Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>R-2</td>
<td>12</td>
<td>Ring</td>
<td>Dark olive gray silt (ML)</td>
</tr>
</tbody>
</table>

Strength Parameters

<table>
<thead>
<tr>
<th></th>
<th>C (psf)</th>
<th>φ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>143</td>
<td>29</td>
</tr>
<tr>
<td>Ultimate</td>
<td>133</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Stress (kip/ft²)</th>
<th>0.500</th>
<th>1.000</th>
<th>2.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Shear Stress (kip/ft²)</td>
<td>0.431</td>
<td>0.663</td>
<td>1.239</td>
</tr>
<tr>
<td>Shear Stress @ End of Test (ksf)</td>
<td>0.421</td>
<td>0.663</td>
<td>1.239</td>
</tr>
<tr>
<td>Deformation Rate (in./min.)</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

Initial Sample Height (in.)	1.000	1.000	1.000
Diameter (in.)	2.415	2.415	2.415
Initial Moisture Content (%)	50.16	50.16	50.16
Dry Density (pcf)	70.1	72.1	72.5
Saturation (%)	96.5	101.2	102.1
Soil Height Before Shearing (in.)	0.9720	0.9462	0.9112
Final Moisture Content (%)	44.6	40.5	37.5
Boring No. B-2
Sample No. R-1
Depth (ft) 12

Sample Type: Ring
Soil Identification: Dark olive gray silt (ML)

Strength Parameters

<table>
<thead>
<tr>
<th></th>
<th>Peak</th>
<th>Ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (psf)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϕ (°)</td>
<td>35</td>
<td>33</td>
</tr>
</tbody>
</table>

DIRECT SHEAR TEST RESULTS
Consolidated Undrained

Project No.: 12096.001
Atkins Carnival

Normal Stress (kip/ft²)
<table>
<thead>
<tr>
<th>Normal Stress (kip/ft²)</th>
<th>1.000</th>
<th>2.000</th>
<th>4.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Shear Stress (kip/ft²)</td>
<td>0.682</td>
<td>1.298</td>
<td>2.801</td>
</tr>
<tr>
<td>Shear Stress @ End of Test (ksf)</td>
<td>0.679</td>
<td>1.283</td>
<td>2.656</td>
</tr>
<tr>
<td>Deformation Rate (in./min.)</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
</tbody>
</table>

Initial Sample Height (in.)	1.000	1.000	1.000
Diameter (in.)	2.415	2.415	2.415
Initial Moisture Content (%)	45.49	45.49	45.49
Dry Density (pcf)	73.3	73.7	77.5
Saturation (%)	94.5	95.4	104.5
Soil Height Before Shearing (in.)	0.9390	0.8900	0.9439
Final Moisture Content (%)	42.2	37.4	31.3
Project Name: Atkins Carnival
Tested By: R. Manning
Date: 08/31/18

Project No.: 12096.001
Input By: J. Ward
Date: 09/11/18

Boring No.: B-1
Checked By: J. Ward

Sample No.: S-1
Depth (ft.): 7.0

Soil Identification: Gray fat clay (CH)

ATTERBERG LIMITS

ASTM D 4318

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO.</td>
<td>1</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>18.23</td>
<td>18.21</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>16.84</td>
<td>16.70</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.75</td>
<td>11.12</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>27.31</td>
<td>27.06</td>
</tr>
</tbody>
</table>

Liquid Limit 50
Plastic Limit 27
Plasticity Index 23
Classification CH

Plasticity Index (PI) = 23

Liquid Limit (LL) = 0.73(LL-20) = 21.9

One-Point Liquid Limit Calculation

LL = Wn(N/25)

PROCEDURES USED

- **Wet Preparation**
 - Multipoint - Wet

- **Dry Preparation**
 - Multipoint - Dry

- **Procedure A**
 - Multipoint Test

- **Procedure B**
 - One-point Test
ATTERBERG LIMITS

ASTM D 4318

<table>
<thead>
<tr>
<th>TEST</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows [N]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>Cannot be rolled: 28.28</td>
<td></td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>NonPlastic</td>
<td></td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liquid Limit

<table>
<thead>
<tr>
<th>Plastic Limit</th>
<th>NonPlastic (NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticity Index</td>
<td>NonPlastic (NP)</td>
</tr>
<tr>
<td>Classification</td>
<td>NonPlastic (NP)</td>
</tr>
</tbody>
</table>

PI at "A" - Line = 0.73(LL-20) = 0.121

One - Point Liquid Limit Calculation

LL = Wn(N/25)
Project Information
- **Project Name:** Atkins Carnival
- **Project No.:** 12096.001
- **Boring No.:** B-2
- **Sample No.:** R-1
- **Soil Identification:** Dark olive gray silt (ML)

ATTERBERG LIMITS
ASTM D 4318

<table>
<thead>
<tr>
<th>Test</th>
<th>Plastic Limit</th>
<th>Liquid Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of Blows</td>
<td>[N]</td>
<td>32</td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td></td>
<td>18.57</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td></td>
<td>17.08</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td></td>
<td>11.12</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td></td>
<td>25.00</td>
</tr>
</tbody>
</table>

Classification
- **Liquid Limit:** 32
- **Plastic Limit:** 25
- **Plasticity Index:** 7
- **Classification:** ML

PI at "A" - Line = 0.73(LL-20)
8.76

One - Point Liquid Limit Calculation

\[LL = Wn(N/25) \]

PROCESSES USED
- Wet Preparation
 - Multipoint - Wet
- Dry Preparation
 - Multipoint - Dry
- Procedure A
 - Multipoint Test
- Procedure B
 - One-point Test

Diagram

- Graph showing the Atterberg limits with lines for CL or OL, ML or OL, and MH or OH
- The graph includes points for various moisture content percentages at different numbers of blows.

Note: The diagram includes a graph showing the relationship between moisture content, number of blows, liquid limit, and plastic limit, with classifications for different soil types.
ATTERBERG LIMITS
ASTM D 4318

PROJECT NAME: Atkins Carnival
PROJECT NO.: 12096.001
BORING NO.: B-2
SAMPLE NO.: T-2

Soil Identification: Olive gray lean clay (CL)

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>LIQUID LIMIT</th>
<th>PLASTIC LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

Liquid Limit | 49
Plastic Limit | 26
Plasticity Index | 23
Classification | CL

PI at "A" - Line = 0.73(LL-20) 21.17
One - Point Liquid Limit Calculation
LL =Wn(N/25)

PROCEDURES USED

- Wet Preparation
 - Multipoint - Wet
- Dry Preparation
 - Multipoint - Dry
- Procedure A
 - Multipoint Test
- Procedure B
 - One-point Test
Soil Identification: Olive gray lean clay (CL)

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Blows [N]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td>18.68</td>
<td>17.71</td>
</tr>
<tr>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td>17.24</td>
<td>16.36</td>
</tr>
<tr>
<td>Wt. of Container (g)</td>
<td>11.75</td>
<td>11.23</td>
</tr>
<tr>
<td>Moisture Content (%) [Wn]</td>
<td>26.23</td>
<td>26.32</td>
</tr>
</tbody>
</table>

Liquid Limit | 49
Plastic Limit | 26
Plasticity Index | 23
Classification | CL

Plasticity Index (PI) at "A" Line = 0.73(LL-20) = 21.17

One-Point Liquid Limit Calculation
LL = Wn(N/25)
Project Name: Atkins Carnival
Project No.: 12096.001
Boring No.: B-3-1
Sample No.: S-1

Soil Identification: Gray silt (ML)

TEST

<table>
<thead>
<tr>
<th>NO.</th>
<th>PLASTIC LIMIT</th>
<th>LIQUID LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Blows [N]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet Wt. of Soil + Cont. (g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry Wt. of Soil + Cont. (g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wt. of Container (g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moisture Content (%) [Wn]</td>
<td></td>
</tr>
</tbody>
</table>

Liquid Limit 49

Plastic Limit 29

Plasticity Index 20

Classification ML

PI at "A" - Line = 0.73(LL-20) 21.17

One - Point Liquid Limit Calculation LL =Wn(N/25)

PROCEDURES USED

- **Wet Preparation**
 - Multipoint - Wet
- **X** Dry Preparation
 - Multipoint - Dry
- **X** Procedure A
 - Multipoint Test
- **** Procedure B
 - One-point Test

PROCESSING

- Wet soil is placed in a pan and an equal amount of water is added to achieve a Water Content of Wn. The water content is achieved by stirring the soil in the pan with a spoon.

- The soil is then placed in a tray and allowed to air-dry for 48 hours.

- Once the soil is dried, it is ground into a fine powder and placed in a clean container.

- The soil is then tested using the procedure outlined in the test methods.

RESULTS

- The results of the test are recorded in the table above.

CLASSIFICATION

- Gray silt (ML)

REMARKS

- The results of the test are recorded in the table above.

DOCUMENTATION

- The test was performed according to the procedures outlined in the test methods.

IMPLEMENTATION

- The results of the test are recorded in the table above.

REFERENCES

- ASTM D 4318

SIGNATURES

- Tested By: R. Manning Date: 08/31/18
- Input By: J. Ward Date: 09/11/18
- Checked By: J. Ward
APPENDIX C

Seismicity Data
Design Maps Summary Report

User-Specified Input

Report Title Atkins Carnival Cruise
Set December 1, 2018 00:18:10 UTC

Building Code Reference Document ASCE 7-10 Standard
(which utilizes USGS hazard data available in 2008)

Site Coordinates 33.7515°N, 118.1871°W

Site Soil Classification Site Class E – “Soft Clay Soil”

Risk Category I/II/III

USGS-Provided Output

\[S_p = 1.589 \, \text{g} \quad S_{HS} = 1.430 \, \text{g} \quad S_{PS} = 0.953 \, \text{g} \]
\[S_I = 0.598 \, \text{g} \quad S_{M1} = 1.434 \, \text{g} \quad S_{D1} = 0.956 \, \text{g} \]

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the “2009 NEHRP” building code reference document.

For PGA_m, T_m, C_m, and C_n values, please view the detailed report.

Design Maps Detailed Report

ASCE 7-10 Standard (33.7515°N, 118.1871°W)

Site Class E – "Soft Clay Soil", Risk Category I/II/III

Section 11.4.1 – Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_a) and 1.3 (to obtain S_i). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From Figure 22-1 \([1]\) \[S_a = 1.589 \text{ g} \]

From Figure 22-2 \([2]\) \[S_i = 0.598 \text{ g} \]

Section 11.4.2 – Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class E, based on the site soil properties in accordance with Chapter 20.

<table>
<thead>
<tr>
<th>Site Class</th>
<th>\bar{v}_a</th>
<th>\bar{N} or N_m</th>
<th>\bar{s}_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hard Rock</td>
<td>>5,000 ft/s</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B. Rock</td>
<td>2,500 to 5,000 ft/s</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C. Very dense soil and soft rock</td>
<td>1,200 to 2,500 ft/s</td>
<td>>50</td>
<td>>2,000 psf</td>
</tr>
<tr>
<td>D. Stiff Soil</td>
<td>600 to 1,200 ft/s</td>
<td>15 to 50</td>
<td>1,000 to 2,000 psf</td>
</tr>
<tr>
<td>E. Soft clay soil</td>
<td><600 ft/s</td>
<td><15</td>
<td><1,000 psf</td>
</tr>
</tbody>
</table>

Any profile with more than 10 ft of soil having the characteristics:
- Plasticity index $PI > 20$,
- Moisture content $w \geq 40\%$,
- Undrained shear strength $\bar{s}_u < 500$ psf

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: $1 \text{ ft/s} = 0.3048 \text{ m/s}$ $1 \text{ lb/ft}^2 = 0.0479 \text{ kN/m}^2$
Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE\textsubscript{a}) Spectral Response Acceleration Parameters

Table 11.4-1: Site Coefficient F\textsubscript{s}

<table>
<thead>
<tr>
<th>Site Class</th>
<th>(S_s \leq 0.25)</th>
<th>(S_s = 0.50)</th>
<th>(S_s = 0.75)</th>
<th>(S_s = 1.00)</th>
<th>(S_s \geq 1.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Section 11.4.7 of ASCE 7</td>
</tr>
</tbody>
</table>

Note: Use straight-line interpolation for intermediate values of \(S_s \)

For Site Class = E and \(S_s = 1.589 \) g, \(F_s = 0.900 \)

Table 11.4-2: Site Coefficient F\textsubscript{i}

<table>
<thead>
<tr>
<th>Site Class</th>
<th>(S_i \leq 0.10)</th>
<th>(S_i = 0.20)</th>
<th>(S_i = 0.30)</th>
<th>(S_i = 0.40)</th>
<th>(S_i \geq 0.50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Section 11.4.7 of ASCE 7</td>
</tr>
</tbody>
</table>

Note: Use straight-line interpolation for intermediate values of \(S_i \)

For Site Class = E and \(S_i = 0.598 \) g, \(F_i = 2.400 \)
Equation (11.4–1):
\[S_{HS} = F_s S_s = 0.900 \times 1.589 = 1.430 \text{ g} \]

Equation (11.4–2):
\[S_{H1} = F_s S_1 = 2.400 \times 0.598 = 1.434 \text{ g} \]

Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4–3):
\[S_{OS} = \frac{2}{3} S_{HS} = \frac{2}{3} \times 1.430 = 0.953 \text{ g} \]

Equation (11.4–4):
\[S_{O1} = \frac{2}{3} S_{H1} = \frac{2}{3} \times 1.434 = 0.956 \text{ g} \]

Section 11.4.5 — Design Response Spectrum

From Figure 22-12[3] \[T_L = 0 \text{ seconds} \]

Figure 11.4–1: Design Response Spectrum

- \(T < T_o : S_a = S_{OS} (0.4 + 0.6 T / T_o) \)
- \(T_o \leq T \leq T_s : S_a = S_{OS} \)
- \(T_s < T \leq T_L : S_a = S_{O1} / T \)
- \(T > T_L : S_a = S_{O1} T_L / T^2 \)
Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE) Response Spectrum

The MCE Response Spectrum is determined by multiplying the design response spectrum above by 1.5.

![Spectral Response Acceleration, Sa (g)](image)

\[S_{aM} = 1.430 \]
\[S_{a5} = 1.426 \]

\[T_f = 0.201 \quad T_s = 1.003 \]

Period, T (sec)
Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From **Figure 22-7** \(^\text{[4]}\)
\[\text{PGA} = 0.622\]

Equation (11.8–1):
\[\text{PGA}_m = F_{PGA}\text{PGA} = 0.900 \times 0.622 = 0.56 \text{ g}\]

Table 11.8-1: Site Coefficient \(F_{PGA}\)

<table>
<thead>
<tr>
<th>Site Class</th>
<th>Mapped MCE Geometric Mean Peak Ground Acceleration, PGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PGA \leq 0.10</td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
</tr>
<tr>
<td>F</td>
<td>See Section 11.4.7 of ASCE 7</td>
</tr>
</tbody>
</table>

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = E and PGA = 0.622 g, \(F_{PGA} = 0.900\)

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From **Figure 22-17** \(^\text{[5]}\)
\[C_{R3} = 0.938\]

From **Figure 22-18** \(^\text{[6]}\)
\[C_{R1} = 0.948\]
Section 11.6 — Seismic Design Category

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

<table>
<thead>
<tr>
<th>VALUE OF S_{ds}</th>
<th>RISK CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I or II</td>
</tr>
<tr>
<td>$S_{ds} < 0.167g$</td>
<td>A</td>
</tr>
<tr>
<td>$0.167g \leq S_{ds} < 0.33g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.33g \leq S_{ds} < 0.50g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.50g \leq S_{ds}$</td>
<td>D</td>
</tr>
</tbody>
</table>

For Risk Category = I and $S_{ds} = 0.953$ g, Seismic Design Category = D

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

<table>
<thead>
<tr>
<th>VALUE OF S_{d1}</th>
<th>RISK CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I or II</td>
</tr>
<tr>
<td>$S_{d1} < 0.067g$</td>
<td>A</td>
</tr>
<tr>
<td>$0.067g \leq S_{d1} < 0.133g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.133g \leq S_{d1} < 0.20g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.20g \leq S_{d1}$</td>
<td>D</td>
</tr>
</tbody>
</table>

For Risk Category = I and $S_{d1} = 0.956$ g, Seismic Design Category = D

Note: When S_i is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category = "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = D

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. *Figure 22-1:*
 https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
2. *Figure 22-2:*
 https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
3. *Figure 22-12:*
 https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
4. *Figure 22-7:*
 https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
5. *Figure 22-17:*
 https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
6. *Figure 22-18:*
Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the U.S. Seismic Design Maps web tools (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

Input

Edition
Dynamic: Conterminous U.S. 2014

Spectral Period
Peak ground acceleration

Latitude
Decimal degrees
33.7515

Time Horizon
Return period in years
2475

Longitude
Decimal degrees, negative values for western long...
-118.1871

Site Class
760 m/s (B/C boundary)
Deaggregation

Component

Total
Summary statistics for, Deaggregation: Total

Deaggregation targets

Return period: 2475 yrs
Exceedance rate: 0.0004040404 yr\(^{-1}\)
PGA ground motion: 0.70498602 g

Recovered targets

Return period: 2748.2102 yrs
Exceedance rate: 0.00036387318 yr\(^{-1}\)

Totals

Binned: 100 %
Residual: 0 %
Trace: 0.06 %

Mean (for all sources)

\(r: 7.11 \text{ km} \)
\(m: 7.05 \)
\(\varepsilon: 1.11 \sigma \)

Mode (largest \(r - m \) bin)

\(r: 6.33 \text{ km} \)
\(m: 7.3 \)
\(\varepsilon: 0.92 \sigma \)
Contribution: 32.57 %

Mode (largest \(\varepsilon \) bin)
Deaggregation Contributors

<table>
<thead>
<tr>
<th>Source Set</th>
<th>Source</th>
<th>Type</th>
<th>r</th>
<th>m</th>
<th>ξ_0</th>
<th>lon</th>
<th>lat</th>
<th>az</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC33brAvg_FM31</td>
<td></td>
<td>System</td>
<td>6.20</td>
<td>7.24</td>
<td>1.01</td>
<td>118.250°W</td>
<td>33.738°N</td>
<td>255.13</td>
<td>42.95</td>
</tr>
<tr>
<td></td>
<td>Palos Verdes [10]</td>
<td></td>
<td>6.20</td>
<td>7.24</td>
<td>1.01</td>
<td>118.250°W</td>
<td>33.738°N</td>
<td>255.13</td>
<td>19.35</td>
</tr>
<tr>
<td></td>
<td>Newport-Inglewood alt 1 [3]</td>
<td></td>
<td>5.61</td>
<td>7.46</td>
<td>0.78</td>
<td>118.149°W</td>
<td>33.789°N</td>
<td>40.38</td>
<td>11.13</td>
</tr>
<tr>
<td></td>
<td>Compton [1]</td>
<td></td>
<td>6.63</td>
<td>7.25</td>
<td>0.74</td>
<td>118.181°W</td>
<td>33.771°N</td>
<td>14.48</td>
<td>9.09</td>
</tr>
<tr>
<td>UC33brAvg_FM32</td>
<td></td>
<td>System</td>
<td>6.20</td>
<td>7.36</td>
<td>0.98</td>
<td>118.250°W</td>
<td>33.738°N</td>
<td>255.13</td>
<td>39.08</td>
</tr>
<tr>
<td></td>
<td>Palos Verdes [10]</td>
<td></td>
<td>6.63</td>
<td>7.30</td>
<td>0.72</td>
<td>118.181°W</td>
<td>33.771°N</td>
<td>14.48</td>
<td>17.54</td>
</tr>
<tr>
<td></td>
<td>Compton [1]</td>
<td></td>
<td>6.63</td>
<td>7.30</td>
<td>0.72</td>
<td>118.181°W</td>
<td>33.771°N</td>
<td>14.48</td>
<td>9.51</td>
</tr>
<tr>
<td></td>
<td>Newport-Inglewood alt 2 [3]</td>
<td></td>
<td>5.69</td>
<td>7.45</td>
<td>0.81</td>
<td>118.148°W</td>
<td>33.789°N</td>
<td>41.26</td>
<td>8.34</td>
</tr>
<tr>
<td>UC33brAvg_FM31 (opt)</td>
<td>Grid</td>
<td></td>
<td>7.25</td>
<td>5.74</td>
<td>1.76</td>
<td>118.187°W</td>
<td>33.801°N</td>
<td>0.00</td>
<td>9.12</td>
</tr>
<tr>
<td></td>
<td>PointSourceFinite: -118.187, 33.801</td>
<td></td>
<td>7.25</td>
<td>5.74</td>
<td>1.76</td>
<td>118.187°W</td>
<td>33.801°N</td>
<td>0.00</td>
<td>3.10</td>
</tr>
<tr>
<td>UC33brAvg_FM32 (opt)</td>
<td>Grid</td>
<td></td>
<td>7.27</td>
<td>5.73</td>
<td>1.76</td>
<td>118.187°W</td>
<td>33.801°N</td>
<td>0.00</td>
<td>8.84</td>
</tr>
<tr>
<td></td>
<td>PointSourceFinite: -118.187, 33.801</td>
<td></td>
<td>7.27</td>
<td>5.73</td>
<td>1.76</td>
<td>118.187°W</td>
<td>33.801°N</td>
<td>0.00</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>PointSourceFinite: -118.187, 33.801</td>
<td></td>
<td>7.27</td>
<td>5.73</td>
<td>1.76</td>
<td>118.187°W</td>
<td>33.801°N</td>
<td>0.00</td>
<td>3.02</td>
</tr>
</tbody>
</table>
APPENDIX D

P-Y Curves Coordinates
<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Elevations (ft)</th>
<th>Depth (Below Seafloor)</th>
<th>Point 1</th>
<th>Point 2</th>
<th>Point 3</th>
<th>Point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y (in)</td>
<td>P (lb/in)</td>
<td>Y (in)</td>
<td>P (lb/in)</td>
</tr>
<tr>
<td>Soft Clay</td>
<td>-89.5 to -109.5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Sand</td>
<td>-130 to -150</td>
<td></td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57.5</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>Stiff Clay w/Free Water</td>
<td>-156.5 to -176.5</td>
<td></td>
<td>57.5</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67.5</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77.5</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>Sand</td>
<td>-176.5 to -196.5</td>
<td></td>
<td>77.5</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Carnival Cruise Line Pier Expansion

Long Beach, California

South Mooring Dolphin

P-Y Curves

36-inch Open-Ended Pipe Pile

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Elevations (ft)</th>
<th>Depth (Below Seafloor)</th>
<th>Point 1</th>
<th>Point 2</th>
<th>Point 3</th>
<th>Point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y (in)</td>
<td>P (lb/in)</td>
<td>Y (in)</td>
<td>P (lb/in)</td>
</tr>
<tr>
<td>Soft Clay</td>
<td>28 to -51</td>
<td></td>
<td>0</td>
<td>0.02</td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>11</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>16</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>24</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>31</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>41</td>
<td>3</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>47</td>
<td>3</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>55</td>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>60</td>
<td>3</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>71</td>
<td>3</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>75</td>
<td>3</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>80</td>
<td>3</td>
<td>152</td>
</tr>
<tr>
<td>Soft Clay</td>
<td>-51 to -76.5</td>
<td></td>
<td>23</td>
<td>67</td>
<td>0.1</td>
<td>803</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>83</td>
<td>0.1</td>
<td>1135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>93</td>
<td>0.1</td>
<td>1483</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>1040</td>
<td>0.1</td>
<td>1759</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>1153</td>
<td>0.1</td>
<td>2242</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>3241</td>
<td>0.4</td>
<td>3358</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>3947</td>
<td>0.4</td>
<td>4073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>4510</td>
<td>0.4</td>
<td>4877</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td>5324</td>
<td>0.4</td>
<td>5702</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>5917</td>
<td>0.4</td>
<td>6508</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>6498</td>
<td>0.4</td>
<td>7509</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>8889</td>
<td>0.4</td>
<td>9860</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.5</td>
<td>9101</td>
<td>0.4</td>
<td>10095</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.5</td>
<td>1361</td>
<td>3</td>
<td>1407</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65.75</td>
<td>1700</td>
<td>3</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>2100</td>
<td>3</td>
<td>2489</td>
</tr>
<tr>
<td>Soft Clay</td>
<td>-76.5 to -111</td>
<td></td>
<td>83</td>
<td>0.18</td>
<td>0.25</td>
<td>10569</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>0.18</td>
<td>0.25</td>
<td>12443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>0.18</td>
<td>0.25</td>
<td>13690</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td>0.18</td>
<td>0.25</td>
<td>15500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>0.18</td>
<td>0.25</td>
<td>16636</td>
</tr>
</tbody>
</table>

Note:
- Point 1: Y (in) 0, P (lb/in) 0
- Point 2: Y (in) 0.5, P (lb/in) 0.02
- Point 3: Y (in) 3, P (lb/in) 0.04
- Point 4: Y (in) 14 ≤, P (lb/in) 0.04

Additional Information:**

- Soil Layer: Soft Clay
- Soil Layer: Sand
- Soil Layer: Stiff Clay w/ Free Water
- Soil Layer: Sand

Observations:**

- The table provides data for various points labeled 1 to 4, with depth increments of 2 feet and pressures ranging from 0.04 to 15 lb/in.
- The data includes soil layer information, point elevations, and pressure values for different depths and points.

Soft Clay

- Elevation range: 28 ft to -51 ft
- Depth range: 28 ft to -51 ft

Sand

- Elevation range: -51 ft to -76.5 ft
- Depth range: -51 ft to -76.5 ft

Stiff Clay w/ Free Water

- Elevation range: -76.5 ft to -111 ft
- Depth range: -76.5 ft to -111 ft

Sand

- Elevation range: -111 ft to -134 ft
- Depth range: -111 ft to -134 ft
Carnival Cruise Line Pier Expansion
Long Beach, California
Gangway Tower
P-Y Curves
36-inch Open-Ended Pipe Pile

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Elevations (ft)</th>
<th>Depth (Beneath Seafloor)</th>
<th>Point 1</th>
<th>Point 2</th>
<th>Point 3</th>
<th>Point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y (in)</td>
<td>P (lb/in)</td>
<td>Y (in)</td>
<td>P (lb/in)</td>
</tr>
<tr>
<td>Soft Clay</td>
<td>28 to 50</td>
<td></td>
<td>0</td>
<td>0.02</td>
<td>3</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.5</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.5</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.5</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0.5</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0.5</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0.5</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>0.5</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>0.5</td>
<td>68</td>
<td>3</td>
</tr>
</tbody>
</table>

Sand	48 to 84		18	0.05	460	0.1	517	0.25 s	517
			20	0.05	510	0.1	800	0.25 s	810
			22	0.05	755	0.1	1060	0.25 s	1200
			24	0.05	860	0.1	1380	0.25 s	1630
			26	0.05	970	0.1	1520	0.25 s	2130
			28	0.05	1090	0.1	1870	0.25 s	2680
			30	0.05	1180	0.1	2100	0.25 s	3300
			32	0.05	1250	0.1	2250	0.25 s	3900
			34	0.25	4400	0.4	4900	0.5 s	5100
			36	0.25	5000	0.4	5700	0.5 s	6030
			38	0.25	5550	0.4	6550	0.5 s	6750
			40	0.25	6080	0.4	7380	0.5 s	7700
			42	0.25	6600	0.4	8250	0.5 s	8700
			44	0.25	7200	0.4	9050	0.5 s	9700
			46	0.25	7800	0.4	9850	0.5 s	1070
			48	1.1	1150	3	1570	11.7 s	305
			50	1.1	1320	3	1790	11.7 s	260
			52	1.1	1500	3	1900	11.7 s	300
			54	1.1	1670	3	2230	11.7 s	360
			56	1.1	1870	3	2500	11.7 s	430
			58	1.1	2070	3	2830	11.7 s	530
			60	1.1	2290	3	3140	11.7 s	630
			62	1.1	2500	3	3440	11.7 s	730

Sand	48 to 132		64	0.35	15000	0.75	16000	1.2 s	16000
			66	0.35	17000	0.75	18800	1.2 s	18800
			68	0.35	22000	0.75	26000	1.2 s	26000
			70	0.35	25080	0.75	31400	1.2 s	32000
			72	0.35	28400	0.75	36900	1.2 s	37600
			74	0.35	31500	0.75	42000	1.2 s	43700

Stiff Clay w/Free Water
-84 to -105
Soft Clay
-105 to -132
Sand
-32 to -50
-50 to -84
-84 to -105
December 20, 2018

Ms. Sandra P Pentney
Atkins
3570 Carmel Mountain Road, Suite 300
San Diego, California 92130

RE: Paleontological mitigation – Long Beach Cruise Terminal Improvement at the Port of Long Beach, Long Beach, California

Dear Ms. Pentney:

It is my understanding that Carnival Corporation & PLC proposes improvements to the Long Beach Cruise Terminal located at Pier H at the Port of Long Beach (POLB), Long Beach, California. Further, it is my understanding that these proposed improvements include earthwork, both offshore and onshore. The proposed offshore earthwork includes dredging of approximately 35,400 cubic yards of material from the existing berth and surrounding area and approximately 50 direct driven piles (Atkins, Inc.). The proposed onshore earthwork improvements include the expansion of a parking garage which will include the installation of 236 foundation piles.

Per your request, the San Diego Natural History Museum, Department of Paleontology reviewed the Project Description for the Long Beach Cruise Terminal Improvement at the Port of Long Beach (Atkins, Inc., August 16, 2018) and project specific geotechnical report (Leighton, December 10, 2018). A review of these documents indicate clearly that the proposed excavation activities for this project will not impact previously undisturbed and paleontologically sensitive sedimentary deposits. Paleontological resources (i.e., fossils) are preserved in layered sedimentary rocks that accumulated in ancient depositional settings. Although potentially fossil-bearing sedimentary rocks of Pleistocene age do underlie the off shore project at depth, these older sediments are buried beneath 18 or more feet of Holocene bay deposits in the off shore areas. This thickness of modern bay deposits is much greater than the maximum depth of the proposed dredging depth (~7 feet). Additionally, the foundation piles will be directly driven into the earth; therefore, sediments from this work will not be observable. The entirety onshore portion of the project is constructed upon approximately 55 to 65 feet of artificial fill.

In summary, because of the thickness of Holocene bay deposits, the onshore facilities reside on a thick package of artificial fill, and the piles will be directly driven into the earth, it is unlikely that construction activities at the project site will produce any direct impacts to paleontological resources. Consequently,
it is my opinion that a paleontological resource mitigation program is unnecessary for the proposed improvements for the Long Beach Cruise Terminal Improvement at the Port of Long Beach project.

If you have any questions, please feel free to contact me at 619.255.0346 or rhubscher@sdnhm.org.

Sincerely,

[Signature]

Paleontological Field Manager
Department of PaleoServices